Lectures 16 and 17

16.3 Fredholm Operators

A nice way to think aboutcompactoperatorss to showthat setof compactop-
eratorsis the closureof the setof finite rank operatorin operatornorm. In this
senseompacibperatoraresimilarto thefinite dimensionatase.Onepropertyof

finite rankoperatorghatdoesnot generalizeo this settingis theoremfrom linear
algebrathatif T: X — Y is alineartransformatiorof finite dimensionalector

spaces then
dim(ker(T)) — dim(Cokejg)) = dim(X) — dim(Y).

Of courseif X or Y is infinite dimensionalthen the right handside of equal-
ity doesnot makesensehoweverthe stability propertythat the equalityimplies
couldbe generalizedThis bringsusto the studyof Fredholmoperators.t turns
out that many of the operatorsarising naturallyin geometry,the Laplacian,the
Dirac operatoretcgive riseto Fredholmoperators.The following is mainly from
Hormander

Definition 16.13.Let X andY beBanachspacesandletT : X — Y beabounded
linear operatorT is said to be Fredholm if the following hold.

1. ker(T) is finite dimensional.
2. Ran(T) is closed.
3. Coker() is finite dimensional.

If T isFredholmdefinetheindex of T denotednd(T) to bethenumberdim(ker(T))—
dim(Coker())

First let us show that the closed range condition is redundant.

Lemma 16.14.LetT : X — Y bea operatorsothatthe rangeadmitsa closed
complementary subspacEhen the range of is closed.

Proof: C be a closedcomplementfor the range. We canassumehat T is
injectivesinceker(T) is aclosedsubspacandhenceX/ ker(T) isaBanachspace
sowe canreplacel by theinducedmapfrom thisquotient.Now consideithemap
S: X @ C — Y defined by

S(x,c) = T(x) +c.

Sis boundedinearisomorphismandhenceby the openmappingtheoremSis a
topological isomorphismThus RanT) = S(X @ {0}) is closed. L.

An importantresultthatwill be usedoverandover againis the opennes®f
invertibility in the operator norm.

Theorem 16.15.1f T : X — Y is a boundedinvertible operator thenfor all
p: X — Y with sufficiently small nornT + p is also invertible.
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Proof. Withoutlossof generalitywe canassumeX = Y andT = |. Thenif the
norm of p is sufficiently small the Neumann series

Oo .
> (=p)
i=1
converges to the inverse bf p. O

We begin with some lemma’s

Lemma 16.16. (F. Riesz)Theunit ball B in a BanachspaceX is compacif and
only if B is finite dimensional.

Proof. SeeKerszigLemma?2.5-4. Thisis easyfor Hilbert spacedut takesa little
care for Banach spaces. O

Lemma 16.17.The following are equivalent:
1. ker(T)) is finite dimensional and Ram| is closed.

2. Everyboundedsequencégx;} ¢ X with Tx; convergenthasa convergent
subsequence.

Proof: Supposethat 1 holds. Sinceker(T) is finite dimensionalit admitsa
closedcomplimentC. SinceRan(T) is closedit is a Banachspacesothe Banach
isomorphismtheoremimplies T|c: C — Ran() is anisomorphismand the
resultfollows. Now supposéhat2 holds. Thenaboundedsequencén thekernel
hasa convergensubsequencsothe kernelis finite dimensional. ThatRan(T) is
closed follows immediately from 2. O

Let Fred(X, Y) denotethe spaceof FredholmoperatorsbetweenX andY.
Also let FredX) be the set of Fredholm operators ®n

Lemma 16.18.Fred(X, Y) is a open subset @ (X, Y) and the index is a locally
constant function on Fred( Y).

Proof. LetT : X — Y beaFredholmoperatorandlet p : X — Y beanoperator
with smallnorm. We canwrite X = C + ker(T) andY = Ran(T) + D. With
respect to this decomposition we can wilteas a matrix

T 0
T=[¢ o]
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and p as the matrix

_la b

P=lc d|
We provetheresultby reductionto thefinite dimensionakituation. In fact we’ll
prove

Lemma16.19.For p sufficientlysmallthereis a linear transformationA : ker(T) —
Coker(T) so that

ker(T + p) = ker(A) andCokerT + p) = CokerA).

In factthenormof p is smallenoughthenT + a will beinvertibleandif we

set 1 | .
| =T +a)” _
G= [O I ] andH = [—C(T’+a)‘1 I] (7)
then T 0
/+ a
HT + PG = [ 0 —c(T+a b+ d] '

The lemma follows immediately from this takily= —c(T + a)~'b + d. O
The proof of the lemma proved the following conceptually useful result

Lemmal6.20.LetT: X — Y beaFredholmmapandp: X — Y alinear map.
If p hassulfficientlysmallnormthenthereareisomorphisms: X' @ K — X and
j: Y = X @ C sothat

jo(T—f—p)oi:[g 8i|
for some linear mag: K — C.

We'll alsoneedthenotionof theadjointof anoperatorlf X isaBanachspace
the dual spaceof X is the spaceof all boundedlinear functionalson X andis
denotedX*. GivenaboundedinearoperatorT : X — Y we havegetalinear
operator

T : YY" - X*

by declaring that for g Y*, T*(p) is the linear functional so which sexdo
p(T(X)).

First we give the dual characterization of the norm.
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Lemma 16.21.For all x € X

X[l = sup ([p()])
lell=1

Proof. Fix xo € X Certainly|p(Xo)| < ||plll|Xoll SO

X0l = sup (lo (%))
lpll=1

Definealinearfunctional : span&y) — R by A(Xg) = ||Xo|| andextendingby
linearity to thespan.Applying theHahn-Banaclheorento A andthesubadditive
function p(x) = ||x|| impliesthe existenceof anextensiorof A to thewholeof X
with

2O = [IX|

Lemma 16.22.1f T is bounded thefd * is bounded with the same norm

Proof.
ITI = sup [ITX]
X[Ix[I<1

= Sup | sup p(TX)|
XllIXII<1 plllpli<1

= sup sup |p(TX)
plllel=1x]lIx|<1

= sup [T*(p)ll
pllpl=1
= |ITI.
O
We’ll need the relationship between the cokernel adind the kernel of *.

Lemma 16.23.If T has closed range then

Coker(M)* = ker(T™).
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Proof. Thereis a naturalmapker(T*) — Coker(T)* by sendingp € ker(T*)
to the linear functionalA € Coker(T)* wherei(y + TX) = p(y). This well
definedsincefor all x € X we havep(Tx) = T*(p)(X) = 0. SinceRan() is
closed,Coker(T) = Y/Ran(T) is aBanachspace.Givenalinearfunctionalx e
Coker(T)* so A: Y/Ran(T) — R and hence defines a bounded linear functional

oY = Y/Ran(T) — R.

Now (T*p)(X) = p(T(x)) = 0. It is easyto checkthatthis invertsthe previous
construction. O

Next we observe that compactness is preserved under taking adjoints.

Lemma 16.24.LetK : X — Y be compact theiK*: Y* — X* is compact.

Proof. This takesa little work. Seefor exampleKreszigIntroductoryfunctional
analysis with applications Theorem 8.2-5. O

Lemma16.25.LetK : X — X beacompacbperator.Thenl + K is Fredholm.

Proof: First we coincidethe kernelof | 4+ K. Let B be the unit ball in
ker(l + K). ThenB = K(B) so B is imageof a boundedsetundera compact
operatohenceds precompactBut B is closedso B is compact.By Riesz’slemma
ker(l + K) is finite dimensional.Next we showthatRan({ + K) is closed.By
lemma 16.17it sufficesto showthatif x; is aboundedsequencsothatx; + K; X;
convergeso y € Y thenthereis x € X sothatx+ Kx = y. Since{x; } is bounded
thereis a subsequence;; sothat{Kx;;} converges.But then{x;;} converges.
Thustheoperator + K is asemi-FredholmApplying thesamearguemento the
adjoint| 4+ K* completes the proof. ]

Next we give a useful characterization of Fredholm operators.

Theorem 16.26. T : X — Y is Fredholmif and only this a boundedlinear
operatorR : Y — X so that

RT—landTR— |

are compact operators.
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Proof. If T is Fredholm then as before we can write
X=X @ker(T)and¥Y =RanT) ¢ C

forcloseobubspaceXic XandC C Y. T|x: X’ — Ran(T) isanisomorphism
soit hasandinverseR. ExtendingR to amapyY — X usingthe direct sum
decomposition gives the required map.

If R existsker(T) is finite dimensionalfrom the equationRT = | + K.
Ran(T) is finite dimensionafrom theequationT R = | + K’ andthe operatoiis
Fredholm. O

Next we consider the composition of Fredholm operators.

Lemma 16.27.LetT : X - Y andS:Y — Z beFredholmoperators. Then
ST: X — Zis Fredholm.Furthermore IndST) = Ind(T) + Ind(S).

Proof: Since(ST)~1(0) = T-1(S1(0)) wehavedim(ker(ST)) < dim(ker(S))+
dim(ker(T)). Similarly dim(CokerST)) < dim(Coker®)) + dim(Coker{T)) so
the composition is Fredholm.

Nextwe considertheindexassertionTo this endconsiderthe family of oper-
atorsA; 1 Y & X — Z & X defined by the equation

| cos(t)S —sin(t)ST
Y= | sin()l  cost)T

for 0 <t < 1. We claimthat A; is a continuousfamily of Fredholmoperators.
But
A — SO0 cog(t)l —sin(t)l | O
t= 10 | sin(t)l  cos(t)l 0T |
So A; is the compositionof Fredholmoperatorsandhenceis Fredholm.Clearly
Ind(Ag) = Ind(T) + Ind(S) and Ind@A;) = Ind(ST). O





