Lecture 30.

21.2 The Frobenious Integrability Theorem

Nextwe considemwhencanasubbundle of thetangentundleT M of M canbe

broughtinto a canonicalform. In generalitythis is a very complicatedproblem

andwe needto isolatemanageableases.The examplethatcomesto mindis the

casewhereZo|x,y) = TxR" x {0} € TYR" x TxR™™", thetangentoundlealong

a product.A subbundle which is locally diffeomorphic togds called integrable.
Notice that & is has following propertyif

n n
: 0 : 0
_ [y my —— _ (e my ——
Xl_z a(x,...,x)axi, and XZ_.E b(x,...,x)axi
is a pair of local sections of gthen the bracket

n . .

. ob! coal, 0
X1, Xo] = a— — b — :
[Xa, X iJX::l( oX! ax')axl

is alsoa local sectionof E. A subbundlewith this propertyis calledinvolutive.
Clearly any integrable subbundle is involutive.
Examples:

2zx d 0 2zy 0

0
Ep=spaf— + —————, — F+ — > —
1=3P r{ax+1+x2—|—y282 ay+1+x2+y282
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is involutive indeed it field of tangent planes to the family of paraboloids
z=11+x>+Vy?

On the other hand

is notinvolutive. In factin hasthe mterestlngpropertythatgiven anytwo points
andanypathconnectedheighborhoodhereis apathtangento Z5 joining thetwo
points contained in the neighborhod@early then & is not integrable.

The following provides a converse.

Theorem 21.4.(Frobenius).If E is involutive then it is integrable.

Proof. Choos¢dirst acoordinatgpatchaboutof thefrom¢ : U — R" x R™ " so
that at p(m = 0 and ¢ (§m) = ToR" x {0}. Set & = ¢, (E).

Thenin someneighborhoodv x W of ¢(m) = 0 we canfind a function
f:VxWxR"— R™" |inearin thelastfactorwith f (0,0, ) = 0 andsothat
any & € E can uniguely be written as

&E=(e f(x,y,e).
There is a natural homotopy ofpd0 E; given by
2 = {(e tf(tx,y,e)le e R"}.
We will show that there is a one parameter family of diffeomorphigimnso that
1. KO)=0and

2. (F)«(Xt) = Eo.

ThusF; is the desired change of coordinatEsrx € V let
XX(va U)) == (X7 f(U, w, X))

Thenthe fact the E; is involutive implies that [ Xy, Xy] € E1 but [Xy, Xy] is
certainlyof theform (O, x) sincethe constanwectorsfieldsx andy commuteso
[Xx, Xy] = 0. More explicitly

[XX7 Xy] = (09 D(v,w,x) f (y’ f(v9 w, y)’ O) - D(v,w,y) f(X, f(U, w, X)’ O)) =
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Let Xi (v, w) = (O, f(tv, w, v)). A typicalsectionof Et is X; x(u, v) = (X, tf (tv, w, X)).

We can work out the brackek}, X x]

[Xtv Xt,X] = (O,tD(tv,w,X) f(o’ f(tU, wv U)a O)
—tDto,w,v) (X, f(tv, w,x),0)— f(tv, w, x))
= —tDtyw.x f(v,0,0)— f(tv, w, X)
d
= ——X
dt t,x
ThustheLie derivativeof [( X;, %), Xt.x] = 0 or equivalentlyif F is theflow of
the time dependenvectorfield thenwe have(F).(Xsx) = Xstt.x asrequired.
O

Here is a more intuitive proof by induction on the dimension.

Proof. Inductionon the dimensionof the subbundle.The caseof dimensionone
follows from the standardiorm for an non-vanishingvectorfield. The question
is alsolocal so we assumehat we are given a subbundleof the tangentbundle
of R" definedin a neighborhoof 0 € R". Supposeve haveprovedthe result
for all subbundle®f dimensiond. Let E be aninvolutive subbundleof TR" of
dimensiond + 1. Chooseanowherevanishingocalsection X, of E. Nextchoose
acoordinatesystemz', ..., 2", centeredat0, sothat ;% = X. TR"1 x {0} is
an integrablehenceinvolutive subbundle. E' = E N TR"1 x {0} definesa
subbundlen a neighborhoodf 0 of dimensiond. SinceE’ is theintersectiorof
two involutive subbundledt is involutive andsotheinductionhypothesisapplies.

We canfind a coordinatesystemy?, ..., y" centeredat O sothat E’ is givenin a
neighborhooaf 0 asthespanof y2, . .., y9 In thisnewcoordinatesystemX may
not be straight but we have that
0 0
— ey, —, X
oyl ayd

forms a basis fokE. We can write
d
- 8
X = a —
LT
i=1
whereXg is section ofT W. Then

0 0
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is alsoa basisfor E. Since Xy is asectionof TW sois [ay' , Xo]. By involutivity
it is parallelto Xg sothereis asmoothfunction f; definedin aneighborhooaf O
with

[ Xo] = f1Xo.

oyt
Set )
o1 = —intd fiw,s,y?, ..., yNds
Then set
X1 = exp@1) Xo.
It is now easy to check that
0

—_— X == .
[8y" 1] =0

X1 is still asectionof TW so[--
function f; so that

By Xo] is parallelto X; andwe canfind asmooth

[8 o Xa] = f2Xg
We claim that
ofo B
ayl
To see this notice that
0 0 ofr
— [—=, X — X1 =0.
[y Ly Xal = 1% =
Using Jacobi’s identity we also have
0 0 0 0 0 0
— [, X4 = [—, —]X — [—, X
[8y1’[ay2a 1] [[8y1’8y2] l]+[8y2’[8y1’ l]
= 0.
So if we set
y2
o= —/ fiow, y s y3 ..., yHds
0
and
Xo = e%2 X,
we have 5
—_—, X = O
[ay' 2]
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fori = 1,2. Continuingin this fashionwe eventuallyfind Xy commutingwith
yl, ..., y4 andwe canconstructhe desiredcoordinatesystemaswe did in class.
O

21.3 Foliations

The local structureof the previoussubsectiorhasasits global counterparthe
notion of a foliation.Here is the precise definition.

Definition 21.5. A foliation F of M is adecompositiorof M asa disjointunion
of connectedmmersedsubmanifoldsM = [ [, 5 £« calledthe leavesof F so
that eachpoint hasa chart (U, ¢) so that under¢ the decompositiorobtained
from the decomposition] [, 5 £« N U by taking componentgjoesover to the
decomposition of R = [ [, gn-« R¥ x x.

It is importantto realizethatin the abovedefinition we do not requirethe
leaves to have the subspace topoldgy example Consider the 2-torus

T2 = R?/7?

Fix a pair of real numbers(¢1, ¢2) sothat¢1/¢2 is irrational. The cosetsof the
subgroud” generatedby {[t 1, tg2]|t € R} giveriseto afoliation with leaveshat
are not locally closed subsets.

Remark6. The spaceof leavesof a foliation is one settingwhereonerunsinto
non-Hausdorfimanifolds. The spaceof leaveshasa naturalcoveringby charts
(These may not be injective so be careful).

22 Characterizing acodimensiononefoliation in terms
of its normal vector.

Let F be a two dimensional foliation of &

Proposition 22.1. Let n be a local normal vector field t6. Then

n-(Vxn =0
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Proof. Write
B

n=a 0 + b +cC
X ay 0z’
By rotatingthe coordinatesve canassumehatnoneof a, b or c arezero. Then
F is locally spanned by the local sections
d ad a ad a

—-b—+a—,c——a—,c— —b—

ay 09X 0z ay 0z

and we have

[—bi-l—ai,ci—aa] = [—bi,—a3]+[ai —]+[ i —a—]

X ay 9X 0z X 0z ay oy’
da o b o ac a da 9 da o da o
= b——--a——+a——-c——+-a——+a——
X 0z dZ 0X ay 90X ax oy ay 0z a0z oy

oc db 9 fda d oa o oa d aaa

= (- —+————— ——+—C——

ay 0z 8x+8zay E)yaz)Jr aX 0z XAy’

Since we are assuming thatis involutive we have
((E - —) —b - ) =
Sincea # 0 we have:
((%——) —b——)—O

This sameequationhold for any cyclic permutationof a, b, ¢ and simultaneous
permutation of, y, z. Adding the resulting three equations gives

(80 Ja (8a ) (ab aac) B
2G5~ 57 Gz~ 3x 0 G~ 5y =

as required. n

23 The holonomy of closed loop in a leaf
Definition 23.1. Let F be a foliation of a manifold M. A transversato F is

smoothlocally closedsubmanifoldof M which meetsall leavestransversallyA
local transversal is a transversal which is diffeomorphic to a disk.

59



To discuss the holonomy we will use the terminology of a germs.

Definition 23.2. Let X, Y be smoothmanifolds. Fix a pointx € X. A germof

smoothmappingsat x is the equivalenceclassof functionsf : U — Y where
U c Xisanopenneighborhooaf x underthe equivalenceelationof agreement
uponrestriction. Thatis f : U — Y is equivalenttog : V — Y if thereis a

neighborhoodV of x so thatf |w = g|w.

Let r; and, belocal transversalitting the sameleaf £ of F. 1 andr, are
bothcontainedn thesamefoliation chartU. Thenthechartdefineshegermof a
diffeomorphismfromzatg N Ltoatn N L

Lety: St — £ beaC? closedloop basedatx in aleaf £ of foliation F. Let
7 be a transversal t¢ passing through.

24 Reeb’s stability theorem

Definition 24.1. A codimensioronefoliation is calledtransversallyorientableif
the normal bundle v= T M/ TF is orientable.

Theorem24.2. Let F bea normallyorientedtwo dimensionafoliation of a com-
pact orientedthree manifold. If F containsS? as a closedleavethenthe pair
M, F is diffeomorphic toS? x S* with the product foliation by two-spheres..

Remark7. To seethatthe normally orientedconditionis importantin the state-
mentof theresultnotethefollowing. S? x S! hasanorientationpreservingnvo-
lution 7 : * x St - S? x St given by

t(x, €)= (=x, e ).

This is a fixed point free involution so the quotientX = S? x St/(x, €?) ~
(—x, e'%) hasthe structureof manifoldas well. The productfoliation is of S? x
Stis carriedto itself by r and descend® a foliationof X. The inducedoliation
is not normally oriented(canyou seethis). Most of theleavesaretwo spherebut
there are two leaves which are real projective planes.

Lemma 24.3. Let¢ : D2 — M be an smoothembeddingf D2 into M2 with
image containedin a leaf L of 7. Thenthereis a foliating coordinatepatch
$ : D? x (—¢, €) > M3 extending ¢
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Proof. Firstof all it is straightforwardo constructa coordinatepatchy : D? x
(—a, a) > M extendingp sothatF is transverseo all they ({x} x (—a, a)) and
soT F agreeswvith Dg ¥ (ToD? x {0}). TransferF to afoliation of D2 x (—a, a)
still called . Let (r, ) be polar coordinates in the disk.

Define Gon (D?\ {0}) x (—a, a) to bethespanof aa_r and%. By construction
G is transverséo F andsotheintersectionT F N G definesaline field on (D? \
{0}) x (—a, a). Thisline field is spannedy avectorfield of theform v(r, 6, t) =
a% +af(r, 6, t)%. We havea(r, 6, 0) = 0 anda(0, 6,t) = 0. andlet Fs denotethe
time s flow of v. Fs(r,0,t) = (r + 5,0, Ts(r, 6, 1)) whenit is defined. Choose
b small enoughso that the time 1-flow of v with initial conditions(0, 6,t) for
t| < b is defined. Defineamap¢ : D? x (=b,b) — D2\ {0}) x (—a, a)
by sending(r, 9, t) to the point (r, 6, T, (0, 6,t)) or in wordsthetimer flow of
(0, 6,1) underv. This maptakestheline segmen{(r,6,1)|0 <r < 1} to aleaf.
Sincefor any6 v(0, 6,t) = % is tangentto F, ¢ carriesD? x {t} ontoa leaf.
Thusé¢ is the required map. O

Next we provethatin a neighborhoof atwo-spherdeafthe foliation hasa
product structure.

Lemma 24.4. Supposéhat £ is a leaf of F which diffeomorphicto S? Theis
a saturatedneighborhoodN of £ which diffeomorphicto S x (—a, a) with the
product foliation.

Proof. Decomposes? = D2 U D2. By the previouslemmawe canfind standard
neighborhoods and glue them together to get the result. O

Nextwe will showthatthe setof pointson a leaf diffeomorphicto S? is both
open and closed.

Theorem 24.5. Let F be a transversallyorientedfoliation. Thenthereis a em-
beddingy : St — M transverseo the leaves.In fact y canbe choserto pass
through any point oM

Remark8. Thisis notto saythattheimageof y hitsall theleaves.Thisisamuch
strongercondition. A foliation with thisadditionpropertyis calledtaut. TheReeb
foliation of S® is anexampleof anon-tautfoliation. Any flow line canonly touch
the torusleaf oncebut a closedcircle transversdo atorusin S® mustmeetthe
torus in an even number of points.
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Proof. Fix apointxg € M. SinceF is transversallyorientedthereis a nowhere
vanishingvectorfield, v, whichis transverseo theleaves.Let F; denotethetime-
t flow for this vectorfield and considera particularflow line, y, of this vector
field. If this flow line is a periodicorbit we aredoneso supposet is not. Then
we claim thatthereis leaf thatis hit infinitely oftenby the flowline. We canfind
X € X andsequencé, — oo sothatlim;_, F;(Xo) = X. LetU beafoliation
chartin M aboutx. We canconstructa smallerchart,V, aboutx by usingthe
vectorfield v to flow awayfrom the leaf £ containingx. In V if apointis ona
connecteccomponenbf the partof the flow line in V it hits £. Sinceinfinitely
manypointsof y in differentcomponentsf y NV arecontainedn V theclaim
follows.

Thuswe canfind a pieceof orbit which containsxg andhits someleaf twice
andthepointsof intersectiorarecontainedn thepatchV. It is straightforwardo
modify the piece of flow line in this patch to close it up. O

Now considerour transversallyorientedfoliation of M3 containinga leaf £
diffeomorphicto S°. Let y beaclosedtransverseurvepassinghrough£. Let T
denotetheunionof all theleaveswhich passthroughI'. We claimthatI" is all of
M and that yhits each leaf the same number of times.

By Lemma?24.4T is open. Also by this lemmatherefor eachpoint y of y
thereis a compactfoliated neighborhoodliffeomorphicto S* x [0, 1]. By the
compactnessf y finitely many suchneighborhoodsovery butthenT is the
unionof finitely manyclosedsetsandhenceclosed.Finally considerthe function
which associatet eachpointy of y theof pointsof y containedn thesamdeaf
asy. By Lemma 24.4 this is a continuous function and hence is constant.

Finally choose a new which hits£ once and hence all leaves ondéen

h:Lxy —> M

givenby takingy € £ andt € y to theuniquepointin theleaf throught hit by
the flow line of vthroughy is the required diffeomorphism.
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