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Let V be a finite dimensional vector space over the reals. The tensor algebra of V 
is direct sum 

Ten(V ) = R ⊕ V ⊕ V ⊗2 . . .⊕ V ⊗k . . . 

It is made into an algebra by declaring that the product of a ∈ V ⊗k and b ∈ 
V ⊗l is a ⊗ b ∈ V ⊗(k+l ). It is characterized by the universal mapping property that 
any linear map V → A where A is an algebra over R extends to a unique map of 
algebras Ten(V ) → A. 

The exterior algebra algebra is the quotient of exterior algebra by the relation 

v ⊗ v = 0. 

The exterior algebra is denoted �∗(V ) or �(V ). It is customary to denote the 
multiplication in the exterior algebra by (a, ) → a ∧ b If v1 . . . vk is a basis for V 
then this relation is equivalent to the relations 

j,vi ∧ v j = −v j ∧ vi for i �= 

vi ∧ vi = 0 

Thus �∗(V ) has basis the products 

vi1 ∧ vi2 . . . vi k 

where the indices run over all strictly increasing sequences of numbers between 1 
and n. 

1 ≤ i i < i2 < . . . < i k ≤ n. 

n
Since for each k there are such sequences of length k we have

k 

dim(�∗(V )) = 2n . 

�∗(V ) since the relation is homogenous the grading of the tensor algebra descends 
to a grading on the exterior algebra (hence the *). 

We can apply this construction fiberwise to a vector bundle. The most impor­
tant example is the cotangent bundle of a manifold T ∗ X in which case we get the 
bundle of differential forms 

�∗(T ∗ X) or �∗(X). 
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We will denote the space of smooth sections of �∗(X) by �∗(X). In local coor­
dinates a typical element of �∗(X) looks like 

ω = ωi i i2...<i kdxi1 ∧ dxi2 ∧ . . . dxik . 
1≤i i<i2<...<i k≤n 

Since the construction of �∗(X) was functorial in the cotangent bundle these 
bundles naturally pull back under diffeomorphism and if f : X → Y is any 
smooth map there is natural map 

f ∗ : �∗(Y) → �∗(X). 

The most important thing about differential forms is the existence of a natural 
differential operator the exterior differential defined locally by the following rules 

n

d f 

dω 

= 

= 

� 

i =1 

∂ f 

∂ xi 
dxi 

� 
dωi i i2...<i k ∧ dxi1 ∧ dxi2 ∧ . . . dxik . 

1≤i i<i2<...<i k≤n 

Notice that we can’t invariantly define a similar operator on the tensor algebra. 
If we have a one form � 

θ = fi dxi 

i =1 

and try to define 

Dθ = 
� ∂ fi 

dxj 
⊗ dxi 

∂ x j 
i =1 

then when if we have new coordinates y1 . . . yn we have 

n i� ∂ x
dxi 

= 
∂ y j 

dyj 

j =1 

and 
n

θ = gmdym 

m=1 

where 
i∂ x

gm = fi 
∂ ym 
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Dθ = 
� 

i =1 

∂ fi 
∂ x j 

dx j ⊗ dxi 

= 
∂ fi 
∂ x j 

∂ xi 

∂ yl 

∂ x j 

∂ ym 
dym 

⊗ dyl 

= 
∂ fi 
∂ yk 

∂ yk 

∂ x j 
∂ xi 

∂ yl 

∂ x j 

∂ ym 
dym 

⊗ dyl 

= 
∂ fi 
∂ ym 

∂ xi 

∂ yl 
dym 

⊗ dyl 

= 
∂ fi 
∂ ym 

∂ xi 

∂ yl 
dym 

⊗ dyl 

= 
� ∂ 

∂ ym 
( fi 
∂ xi 

∂ yl 
) − fi 

∂2xi 

∂ ym∂ yl 

� 
dym 

⊗ dyl 

= 
n� 

m=1 

∂gl 

∂ ym 
dym 

⊗ dyl 
− fi 

∂2 xi 

∂ ym∂ yl 
dym 

⊗ dyl . 

Thus our definition depends on the choice of coordinates. Notice that when we 
pass to the exterior algebra this last expression vanishes that exterior derivative is 
well defined. 

Theorem 25.1. d2 
= 0. 

Proof. From the definition in local coordinates it suffices to check that d2 
= 0 on 

functions. 
n

d2( f ) = 
∂ x

∂

i 

2 

∂ 

f

x j
dxi 

∧ dx j = 0 
i, j =1 

since the f smooth so the matrix of second derivatives is symmetric. 

Proposition 25.2. 

d(a ∧ b) = da ∧ b + (−1)deg(a) 
∧ db. 
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Proof. The bilinearity of the wedge product implies that it suffices to check the 
result when 

a = f dxi1 ∧ dxi2 ∧ . . . ∧ dxik . 

∞

gether with a map d : C → C so that dCi ⊂ Ci +1 and d2 
= 0. The cohomology 

groups of a cochain complex are defined to be 

Definition 25.3. A cochain complex is a graded vector space C = i =0 Ci to­

Hi (C,d) = ker(d : Ci 
→ Ci +1)/Ran(d : Ci −1 

→ Ci ) 




