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1 Lecture 1 (Notes: K. Venkatram)

1.1 Smooth Manifolds

Let M be a f.d. C° manifold, and C*°(M) the algebra of smooth R-valued functions. Let T' = T'M be
the tangent bundle of M: then C°°(T) is the set of derivations Der(C*°(M)), i.e. the set of morphisms
X € End(C*(M)) s.t. X(fg) = (Xf)g+ f(Xg). Then C(T) is equilled with a Lie bracket [,] via the
commutator [X,Y]f=XYf-YX/f.

Note. Explicitly, [X,Y] can be obtained as lim;_,o Y_Ftlg(y, where Fly € Diff(M) is the flow of the vector
field on M.

Definition 1. The exterior derivative is the mapping
E k+1
d:Cc> (/\T) — > (/\ T*)

(Xo,...,Xk)I—>Z(—l)iXip(Xo,...,Xi,...,Xk) (1)

i

pl—)

3 (-1)p(Xs, X, Xoo - Xy X X

i<j

Since [,] satisfies the Jacobi identity, d* = 0, i.e.

k—1 k k+1
.._>00°</\T*>icm</\T*>icm</\T*>_>... (2)

is a differential complex of first-order differential operators. Set Q¥(M) = C=(A" T*). Letting my ={g—
fg} denote multiplication by f, one finds that [d, m|p = df A p, thus obtaining a sequence of symbols

k—1 k k+1

N1 iy AT " N1 (3)

which is exact for any nonzero 1-form n € C°°(T*). Thus, Q* is an elliptic complex. In particular, if M is

compact, H*(M) = Xt dlo* s finite dimensional.
’ Im d\Q*,l

Remark. d has the property d(a A 8) = da A dB + (—1)9% *a A dB. Thus, (Q°(M),d, A) is a differential
graded algebra, and H*(M) = @ H*(M) has a ring structure (called the de Rham cohomology ring).

We would like to express [X,Y] in terms of d. Now, a vector field X € C°°(T') determines a derivation
ix Q8 (M) — Q"L (M), p e [(Ya,. .., Ye) = p(X, Y7, .., YR (4)
of Q*(M). ix has degree —1 and order 0.
Definition 2. The Lie derivative of a vector field X is Lx = [ix,d].
Note that this map has order 1 and degree 0.

Theorem 1 (Cartan’s formula). i;x y] = [[ix,d],iy]



One thus obtains [,] as the derived bracket of d. See Kosmann-Schwarzbach’s “Derived Brackets” for
more information.

Problem. Classifly all derivations of Q°(M), and show that the set of such derivations has the structure of
a Z-graded Lie algebra.

One can extend the Lie bracket [,] on vector fields to an operator on all C*° (A" T).

Definition 3. The Shouten bracket is the mapping

p q ptq—1
[]:C>® </\T> x O (/\T) — > ( A T)
(Xi A AXp VI A AYy) = > ()M [X VI AXI A AXi A AXp AV A AV A A Y
()
with the additional properties [X, f] = —[f, X] = X(f) and [f,g] = OVf,g € C>°(M).
Note the following properties:
° [P7 Q] _ _(_1)(deg P—1)(deg Q_l)[Q,P]
e [P,QAR]=[P,Q] AR+ (—1){des P=1)deg Q) A [P, R]
o [P[Q R]] = [[P,Q], R] + (~1)(@e P=Dldes @=D[Q, [P, R]]

Thus, we find that C*°(AT) has two operations: a wedge product A, giving it the structure of a graded
commutative algebra, and a bracket [,], giving it the structure of the Lie algebra. The above properties
imply that it is a Gerstenhaber algebra.

Finally, for P = X; A--- A X, define i, = ix, o---oix, . Note that it is a map of degree —p

Problem. Show that [[ip, d]ig] = (—1)(dee P=Ddes @=1)j , o

1.2 Geometry of Foliations

Let A C T be subbundle of the tangent bundle (distribution) with constant rank k.

Definition 4. An integrating foliation is a decomposition M = | |S of M into “leaves” which are locally
embedded submanifolds with TS = A.

Note that such leaves all have dimension k.
Theorem 2 (Frobenius). An integrating foliation exists < A is involutive, i.e. [A, A] C [A].

A distribution is equivallently determined by Ann A C T* or the line det Ann A C Q"~*(M). That is,
for locally-defined 1-forms (61,...,0,—x) s.t. A =), Ker 0;, @ =01 A--- A6, generates a line bundle. If A
is involutive, ixiydQ = [[ix,d],iy]Q2 = ijx y)2 = 0 for all X,Y s.t. ixQ =iyQ = 0. That is, d2 =nAQ
for some 1-form n € Q.

Remark. More generally, let A C T be a distribution on non-constant rank spanned by an nvolutive C* (M)
module D C C*°(T) at each point. Sussmann showed that such a D gives M as a disjoint union of locally
embedding leaves S with T'S = A everywhere.



1.3 Symplectic Structure

Definition 5. An symplectic structure on M is a closed, non-degenerate two-form w : T — T*.
Let (M,w) be a symplectic manifold: note that det w € det T* @ det T*.
Problem. Show that det w = Pf w ® Pf w, where Pf is the Pfaffian.

Theorem 3 (Darboux). Locally, 3C*° functions pi1,...,Pnsq1,---,qn S-t. {dp;,dg;} span T* and w =
S dp; Adg;. That is, (M,w) is locally diffeomorphic to (R?™,>" dx; A dy;).

Moreover, by Stokes’ theorem, one finds that [, wA---Aw#0 = [w]" # 0 for all i.

Corollary 1. Neither S* nor S' x S have a symplectic structure.

2 Lecture 2 (Notes: A. Rita)

2.1 Comments on previous lecture
(0) The Poincaré lemma implies that the sequence
L o CR (AR L oo (AR —L oo (ARFIT)
is an exact sequence of sheaves, even though it is not an exact sequence of vector spaces.

(1) We defined the Lie derivative of a vector field X to be Lx = [tx,d]. Since tx € Der™*(Q(M)) and
d € Der™ (Q(M)), we have

[tx,d] =txd— (—1)(1)‘(_1)dLX =1xd+dix
(2) w:V — V* w* = —w If w is an isomorphism, then for any X € V we have w(X, X) = 0, so that
X € X¥ =Ker w(X) =w 'Ann X
Thus, we have an isomorphism w* : X*/(X) =, Amn X/ (wX) and

Am X (X)" (X“’)

(WwX) (X2 \(X)

Then using induction, we can prove that V' must be even dimensional.

2.2 Symplectic Manifolds

(continues the previous lecture)

For a manifold M, consider its cotangent bundle T*M equipped with the 2-form w = df, where 6 €
QY (T*M)is such that 0,(v) = a(m.(v)). In coordinates (z',...,2" a1,...,a,), we have § = Y, a;dx’ and
therefore df = )", da; A dx’, as in the Darboux theorem. Thus, T*M is symplectic.

Definition 6. A subspace W of a symplectic 2n— dimensional vector space (V,w) is called isotropic if w|w =
0.

W is called coisotropic if its w-perpendicular subspace W* is isotropic.

W is called Lagrangian if it is both isotropic and coisotropic.



There exist isotropic subspaces of any dimension 0, 1,...,n, and coisotropic subspaces of any dimension
n,n~+1,...,2n. Hence, Lagragian subspaces must be of dimension n.
We have analogous definitions for submanifolds of a symplectic manifold (M, w):

Definition 7. L 4, (M,w) is called isotropic if f*w = 0. When dim(L) = n it is called Lagrangian.

The graph of 0 € C*° (M, T*M), which is the zero section of T* M, is Lagrangian.

More generally, I'¢, the graph of £ € C*°(M,T*M) is a Lagrangian submanifold of T*M if and only if
d¢ = 0. It is in this sense that we say that Lagrangian submanifolds of T*M are like generalized functions:
f € C>(M) gives rise to df, which is a closed 1—form, so I'qy C T*M is Lagrangian.

Proposition 1. Suppose we have a diffeomorphism between two symplectic manifolds, ¢ : (My,wo) —
(My,w1) and let w; : My x My — M;, i = 0,1 be the projection maps.
Then, Graph(p) C (Mo x My, mjwo — mjwi) is Lagrangian if and only if ¢ is a symplectomorphism.

2.3 Poisson geometry

Definition 8. A Poisson structure on a manifold M is a section m € C*°(A*(TM)) such that [r,7] = 0,
where [-, -] is the Shouten bracket.

Remark. [r,7] € C®(A3(TM)), so for a surface (2, all 7 € C®(A%(TM)) are Poisson.
This defines a bracket on functions, called the Poisson bracket:

Definition 9. The Poisson bracket of two functions f,g € C*°(AY(TM)) is

{f,9} =m(df,dg) = (df Ndg) = [[m, f], 4]

Proposition 2. The triple (C*°(M),-,{,}) is a Poisson algebra, i.e., it satisfies the properties below. For
f,9.h € C=(\UTM)),

o Leibniz rule {f,gh}t ={f, 9} h+ g{f, h}
o Jacobi identity: {f,{g,h}} + {g,{h, f}} +{h,{f,9}} =0

8/\8

Problem. Write {f, g} in coordinates for m = 7% 575 A 575.

A basic example of a Poisson structure is given by w™!, where w is a symplectic form on M, since
whw!]=0sdv=0 (6)
Problem. Prove @ by testing dw(Xy, X4, Xp), for f,g,h € C°(M).

Poisson manifolds are of interest in physics: given a function H € C°°(M) on a Poisson manifold (M, ),
we get a unique vector field Xy = n(dH) and its flow Flg(H. H is called Hamiltonian, and we usually think
about it as energy.

We have Xy (H) = n(dH,dH) = 0, so H is preserved by the flow. What other functions f € C*(M)
are preserved by the flow? A function f € C°°(M) is conserved by the flow if and only if Xg(f) = 0,
equivalently {H, f} =0, f commutes with the Hamiltonian.

If we can find k conserved quantities, Hy = H, Hy, Ha, ..., Hy such that {Hy, H;} = 0, then the system
must remain on a level surface Z = {z : (Hy,..., Hy) = ¢} for all time. Moreover, if {H;, H;} for all ¢, j
then we get commutative flows F’ l}HY . If Z is compact, connected, and k = n, then Z is a torus T", and the
trajectory is a straight line in these coordinates. Also, T™ is Lagrangian.



Problem. Describe the Hamiltonian flow on T*M for H = «* f, with f € C*°(M) and 7 : T*M — M.
Show that a coordinate patch for M gives a natural system of n commuting Hamiltonians.

Let us now think about a Poisson structure, m : T* — T and consider A = Imw. A is spanned at each
point = by 7(df) = X, Hamiltonian vector fields. The Poisson tensor is always preserved:

LXfW = [ﬂ—?Xf} = [7Ta [7‘—7 f]] = [[W’ﬂ ’f] + (_1)1.1 [Wv [Wa fH = - [777 ["Tv fH
- LXfﬂ' =0

If Ay = (X4,,...,Xy,), then Fl_t,é1 0...0 Fl%k (xg) sweeps out S 3 zy submanifold of M such that
TS = A.
Example (of a generalized Poisson structure). Let M = g*, for g a Lie algebra, [,-] € A%g* ® g. Then
TM =M x g* and T*M = M x g, and also A2(TM) = M x A%g, so [-,] € C®°(A*Tg*).

Given f1, fo € C°°(M), their Poisson bracket is given by {f1, fo} (x) = ([df1, df2] , x).

For f,g € g linear functions on M, we have

X¢(9) = ([f,9],7) = (adyg,z) = (g, —ad}z)

Thus Xy = fad;‘l, so the the leaves of A = Im7 are coadjoint orbits. If S is a leaf, then

0 — N§f —T*g —T|s —0

T"|s

is a short exact sequence and we have an isomorphism 7, : T*S = =3 = TS, which implies that the leaf
S is symplectic.

Given f,g € C*(S), we can extend them to f,.geCc™ (M). The Poisson bracket {f,g} is independent
of choice of f, g, so {f,9}.. = {f,g} is well defined.

Therefore, giving a Poisson structure on a manifold is the same as giving a “generalized” folliation with
symplectic leaves.

When 7 is Poisson, [, 7] = 0, we can define
dp = [10,-] : C°(ANFT) — C°(AFTIT)
Note that [r, ] is of degree (2 — 1), so it makes sense to cal it d,. Also,
dz(A) = [m, [, A]] = [[r, 7], A] =[x, [r, A]] = — [m, [r, A]]

™
—=d>=0
Thus, we have a chain complex

s C®(AFTLT) L oo (ART) L oo (AR LT —

Moreover, if my denotes multiplication by f € C* (M),

[dr,ms] = de(fY) = fdatp = [, fb] = flm, ] = [m, fIN Y = v Ao

But for any £ € T, € £ 0, (tem)A : AFT — AFHLT is exact only for tem # 0. So, if 7 is not invertible, d
is not an elliptic complex, and the Poisson cohomology groups, H*(M) = Ker dy|sxr/Im dy|sx-17 could be
infinite dimensional on a compact M.

Let us look at the first such groups:

HY(M)={f:d.f =0} ={f: X; = 0} = {Casimir functions, i.e. functions s.t.{f, g} = 0 for all g}
HX(M)={X:d,X =0} /Im d, = {infinitesimal symmetries of Poisson vector fields} /Hamiltonians
H2(M) = {P € C*°(A°T) : [z, P] = 0} = tangent space to the moduli space of Poisson structures



3 Lecture 3 (Notes: J. Bernstein)

3.1 Almost Complex Structure

Let J € C>°(End(T)) be such that J? = —1. Such a J is called an almost complex structure and makes the
real tangent bundle into a complex vector bundle via declaring iv = J(v). In particular dim g M = 2n. This
also tells us that the structure group of the tangent bundle reduces from Gi(2n,R) to Gl(n,C). Thus T is
an associated bundle to a principal Gi(n,C) bundle. In particular we have map on the cohomology,

H*(M,Z) — H*(M,Z/27)
o(T,J) — w(T)

Where ¢(T,J) are the Chern classes of T (with complex structure given by J) and w(T) are the Stiefel-
Whitney classes. Here the map is reduction mod 2. In particular wg;+1 = 0 and ¢; — we, the later fact
implies that M is Spin®.

Recall that the Pontryagin classes of a vector bundle are p; € H* such that p;(E) = (—1)co;(E®C). We
study p;(T) = (—1)%c2;(T®C). Since the eigenvalues of J : T — T are +i we have the natural decomposition

T®C=(Ker (J—1)® (Ker (J+14)=T10®To1

Here T1 and Tp,1 are complex subbundles of T'® C and on has the identifications (T4 ,4) = (T, J) and
(To1,%) = (T, —J). Hence if we choose a hermitian metric h on T' we get a non degenerate pairing,

TioxTp1 —C

and hence T o = (Tp1)*. We now compute

Z(—l)kpk(T) = Zc2k(T1,0 ®©Toq) = Z Zci(Tl,O) U cop—i(To,1) = (Z ci(Ti0)) U (Z c;j(To,1)
k ki j

k

K2

where the last equality comes from rearranging the sum. Now we have ¢;(Tp1) = (—1)c;(T1,0) and since we
can identity 77 o with (7, J) we have

Y D (T = Qe ) U QY (~1) (T, )
K i i

Thus the existence of an almost complex structure implies that one can find classes ¢; € H?(M,Z) that
when taken mod 2 give the Stiefel-Whitney class and that satisfy the above Pontryagin relation.

Problem. Show that S** does not admit an almost complex structure.

Remark. Topological obstructions to the existence of an almost complex structure in general are not known.

3.2 Hermitian Structure
Definition 10. A hermitian structure or a real vector space V' consists of a triple
e J an almost complex structure
o w:V = V*w symplectic (i.e. w* =—-w)
e g:V = V* g ametric (i.e. g* =g and if we write x — g(x,-) then g(z,z) > 0 for x #0)

with the compatibility
goJ=w



Now pick (J, g) this determines a hermitian structure if and only if
—(9))=(gJ)" =Tg" =J"yg
. On the other hand (J,w) determines a hermitian structure if and only if
—(wJ) = (WY = —Jw = J'w
that is if and only if J*w + wJ = 0. Then we have (J*w + wJ)(v)(w) = w(Jz,y) + w(z, Jy) = 0 which is
equivalent to w of type (1,1). We get three structure groups
g — OV,g)={A:A"gA =g}
w — Sp(V,w) ={A"wA = w}
J — GUV,J)={A:AJ=JA}
Now if we form h = g + iw we obtain a hermitian metric on V. And we have structure group
Stab(h) = U(V,h) = O(v,h) N Sp(V,w) = GU(V, J) N O(V,g) = Sp(V,w) NGI(V, J)
we note U(V, h) is the maximal compact subgroup of GI(V, J).

Problem. 1. Show Explicitly that given J one can always find a compatible w (or g)
2. Show similarly that givne w can find compatible g.

3.3 Integrability of J

Since we have a Lie bracket on T we can tensor it with C and obtain a Lie bracket on T'® C. The since
T®C = Ti0® Tp,, integrability conditions are thus that the complex distribution 71 is involutive i.e.
[T1,0,T1,0) C T1,0. How far is this geometry from usual complex structure on C"? Idea is if one can form M ¢
the complexification of M (think of RP™ C CP"™ or R™ C C", indeed if M is real analytic it is always possible
to do this. Then M has two transverse foliations by the integrabrility condition (from Ty and Tp1). Say

functions z* : M© — C cut out the leaves of Th o (i.e. the leaves are given by 2! = 22 = ... = 2" = ¢).
Then when one restricts the z% to a neighborhood U C M, obtains maps z!,...,2z" : U — C such that
<dz',...,dz" >= 1Yo = Ann(Tp,1. That is one obtains a holomorphic coordinate chart. Moreover in this

chart one has 5
Remark. This is similar to the Darboux theorem of symplectic geometry

More generally we have

Theorem 4. (Newlander-Nirenberg) If M is a smooth manifold with smooth almost complex structure J
that s integrable then M is actually complex.

Note. This was most recently treated by Malgrange.

Now T o closed under [, ] happens if and only if for X € T, X —iJX € T} g one has [X —iJX,Y —iJY]| =
Z —iJZ. That is [X,Y] — [JX,JY ]|+ J[X,JY]+ J[JX,Y] =0

Definition 11. We define the Nijenhuis tensor as Ny(X,Y) = [X,Y] - [JX,JY ]+ J[X,JY] + J[JX,Y]
Problem. Show that N is a tensor in C®(A\*T* @ T).

Thus one has J integrable if and only if N; = 0.



Remark. N;=0 is the analog of dw € C=(\*T*)

Now if we view J € End(T) = QYT) = Y. ¢ @ v; then J acts on differential forms, p € Q (M) by
17(p) = D& Ny,p = > (€gi - 15,,)p. And one computes

wanpB)=1(a) A+ (1)@ A0
thus 1 € Der’(Q'(M)) and we may form Lj = [1;,d] € Der' (' (M)).
Note. L; is denoted d°
Definition 12. We define the Nijenhuis bracket [,]: Q¥ x Q' — Q¥+ by Lj; 5y = [L;, L]
One checks [Lj, Lj] = Ly, hence Ny = [J, J].

3.4 Forms on a Complex Manifold

In a manner similar with our treatment of foliations, we wish to express integrability in terms of differentiable
forms. Let Tp 1 (or T1,0) be closed under the complexified Lie bracket. Since Ann Tpq = Ty =< o, ....0m >
(Amn Ty = T7p), @ = 0" A...0" is a generator for det Ty, = K. Where here K is a complex line
bundle. The condition for integrability is then dQ™°? = ¢%1 A Q™0 for some £. Taking d again one obtains
0=déAQW0 —ENdQ =dENQ, hence IE = 0. We call K = \" TYy the canonical bundle.

Note. This definition is deserved since K C AT*®C and Ty 1 = AnnK = {X 1xQ = 0}, i.e. we can recover
the complex structure from K

More fully, there is a decomposition of forms

Aroc-@ (Ar@A. )

b,q
o =ari(m)
p,q

that is a Z x Z grading. ~
~ Since dQ™0 = £ A Q we have integrability if and only if d = d + 0, where here d = 7, 441 o d and
0 ="Tpt1,40d.

Problem. Show that without integrability
d=0+09+d"

where N; € A2T* @ T and d¥ = 1y,. Also determine the p, ¢ decomposition of d*.

3.5 Dolbeault Cohomology
Assuming Ny = 0 one has 9% = 52 = 00 + 00 = 0. Thus one gets a complex
9 : QPY(M) — QP (M),
The cohomology of this complex is called the Dolbeault cohomology and is denoted

Ker 5|Qp,q

tOlors _ praqyy),
Im 3|Qp,q71

B

10



This is a Z x Z graded ring. The symbol of d can be determined from the computation [3,m fl = €5 Now
given a real form £ € T* — {0} then

P.q p,q+1
p — &' ap

is elliptic, since £ = €80 4 €01 = ¢1.0 4 ¢0.1 (as & real) and so €21 # 0. Hence dim H2Y < 0o on M compact.
Now suppose E — M is a complex vector bundle, how does pone make E compatible with the complex
structure J on M?

Definition 13. E — M a complex vector bundle is a holomorphic if there exists a connection O : C*(E) —
C>(Tg, ® E) which is flat (i.e. 95 = 0).

This gives us a complex
C¥(T5,®E)— ... Q"E)=C*(\T*QE) — ...

The cohomology of this complex is called Dolbeault cohomology with values in E and is denoted Hg (M, E).
YE
Elliptic theory tells us that M compact implies Hg (M, E) is finite dimensional. We note that d|gn.0 is a
E
holomorphic structure on K and hence K is a holomorphic line bundle.

Problem. Find explicitly the O operator on E = Th,0

4 Lecture 4 (Notes: J. Pascaleff)

4.1 Geometry of V @ V*

Let V be an n-dimensional real vector space, and consider the direct sum V & V*. This space has a natural
symmetric bilinear form, given by

(X +6Y +0) = (E0) +0(X))

for X, Y € V, &, n € V*. Note that the subspaces V and V* are null under this pairing.
Choose a basis e, es,...,e, of V, and let e, e?,..., e™ be the dual basis for V*. Then the collection

1 2 1 2
er+e,eates, .. .,e,+e", e —e,ea—e, ..., e, —€"

is a basis for V @ V*, and we have ‘ ‘
(ei+e e +e)=1

(e; —e' e; —e') = —1,

whereas for i # j, _ _
(e; £e'ej£e)=0

Thus the pairing (-, -) is non-degenerate with signature (n,n), a so-called “split signature.” The symmetry
group of the structure consisting of V' @ V* with the pairing (-, -) is therefore

OV @V ={AcGLVa@V*): (A, A) = ()} = O(n,n).

Note that O(n,n) is not a compact group.
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We have a natural orientation on V & V* coming from the canonical isomorphisms
det (VoV*)=det Vdet V" =R.

The symmetry group of V @& V* therefore naturally reduces to SO(n,n).
The Lie algebra of SO(V @& V*) is

SO(V (5] V*) = {Q : <Qﬂ > + <7Q>}

By way of the non-degenerate bilinear form on V @ V*, we may identify V & V* with its dual, and so we
may write

so(VO V) ={Q:Q+Q" =0},
We may decompose @ € so(V @ V*) in view of the splitting V & V*:

A B

A: V-V pB:V*=>V
B:V-sV* D:V*->V*

The condition that @ + @* = 0 means now

«_ (DT BT _
or D" = —A, §* = —f3, and B* = —B. The necessary and sufficient conditions that A, 3, B, D give an
element of so(V @ V*) are therefore

where

AcEndV, BeA?V, BeAV* D=-A"
Thus we may identify so(V @ V*) with
End(V) @ A2V @ A2V*,

This decomposition is consistent with the fact that, for any vector space F with a non-degenerate sym-
metric bilinear form (,-), we have
so(E) = A’E.

In the case of E =V @ V* this gives
so(VaV)=A2(VaV*)=AVe (Ve V) e AV,

and the term V' ® V* is just End(V).

Of particular note is the fact that the “usual” symmetries End(V') of V' are contained in the symmetries
of V& V*. (Since V is merely a vector space with no additional structure, its symmetry group is GL(V),
with Lie algebra gl(V) = End(V).)

Now we examine how the different parts of the decomposition

so(V @ V*) =End(V) @ AV @ A2V*

acton Vo V™.
Any A € End(V) corresponds to the element

Qa= <gl _?4*> €so(V V™).
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Which acts on V @ V* as the linear transformation
A
Qa _ e 0 *
e = (0 ((6‘4)*)_1) €SO(V@V )

Since any transformation T € GL™ (V) of positive determinant is e?* for some A € End(V). We can regard
GLT (V) as a subgroup of SO(V @ V*). In fact the map

P 0
Pt 00
gives an injection of GL(V) into SO(V @ V*).
Thus, once again, the usual symmetries GL(V') may be regarded as part of a larger group of symmetries,
namely SO(V @ V*). This is the direct analog of the same fact at the level of Lie algebras.
Now consider a 2-form B € A2V*. This element corresponds to

Qp = (g 8) eso(VaoVvT,

which acts V @ V* as the linear transformation

0 0 10 0 0 10
B _ QB _ _ _
e =e eXp(B o)<o 1>+<B 0)+0<B 1)’

since Q% = 0. More explicitly, eg is the map

(?) - <£+JE§(X>> - (5 +)§XB)'

Thus B gives rise to a shear transformation which preserves the projection onto V. These transformations
are called B-fields.
The case of a bivector 3 € A2V is analogous to that of a 2-form: 3 corresponds to

o)
-3 (9= ()
- S \0 1)\ & 13 ’

or in other words a shear transformation preserving projection onto V*. These are called 3-field transfor-
mations.

In summary, the natural structure of V& V* is such that we may regard three classes of objects defined
on V, namely, endomorphisms, 2-forms, and bivectors, as orthogonal symmetries of V' & V*.

which acts on V@ V* as

4.2 Linear Dirac structures

A subspace L C V @ V* is called isotropic if
(x,y) =0 forall z,y € L.

If V has dimension n, then the maximal dimension of an isotropic subspace in V @ V* is n. Isotropic
subspaces of the maximal dimension are called linear Dirac structures on V.
Examples of linear Dirac structures on V are

13



1.V

2. V.

eBV ={X +ixB: X € V}, which is simply the graph I'g of the map B : V — V*.
PV =LiB+EEEVH)

In general, A -V, where A € O(V & V*).

orok W

Exercise. If D is a linear Dirac structure on V, such that the projection onto to V', my (D) =V, then there
is a unique B : V — V* such that D = eBV. Specifically B = my~ o (7| D)~ L.

A further example of a linear Dirac structure is given as follows: let A C V' be any subspace of dimension
d. Then the annihilator of A, Ann(A), consisting of all 1-forms which vanish on A is a subspace of V* of
dimension n — d. The space
D=A@®Am(A)CcVaoV”

is then isotropic of dimension n, and is hence a linear Dirac structure.
When we apply a B-field to a Dirac structure of this kind, we get

B(A®AM(A) ={X +&+ixB: X € A& € Ann(A)}

=eP(A) ® Ann(A).

We define the type of a Dirac structure D to be codim(my (D)). The computation above shows that a
B-field transformation cannot change the type of a Dirac structure.

What matters in this computation is not so much B itself as it is the pullback f*B of B under the
inclusion f : A — V. Indeed, if f*B = f*B’, then

0=ix(f*B— f*B') = f*(ixB — ix B).
This means that ix B —ix B’ € Ann(A), and so
eB(A) & Ann(A) = e (A) & Ann(A).

Generalizing this observation, let f : E — V be the inclusion of a subspace E of V, and let ¢ € A2E*.
Then define
L(B.e) = {X +£€ EaV": f*¢ = ixe},

which is a linear Dirac structure. Note that when € = 0,
L(E,0) = E @& Ann(E).

Otherwise, L(F,¢€) is a general Dirac structure.
Conversely, the subspace E and 2-form € may be reconstructed from a given Dirac structure L. Set

EZ?T\/(L) cV.

Then
LNV*={{: (L) =0}

={¢:&(mv(L)) = 0}
= Ann(FE).
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We can define a map from E to V*/L N V* by taking e € F first to (my|L)"!(e) € L, and then projecting
onto V*/L NV*; this yields
e:E—-V*/LNV*=V"/Ann(E) = E*.
Then we have € € A2E*, and L = L(E, ¢).
In an analogous way, we could consider Dirac structures L = L(F, ), where F' = wy« (L), and v : FF — F*.

Exercise. Let Dirg (V') be the space of Dirac structures of type k. Determine dim Dirg (V). Compare this to
the usual stratification of the Grassmannian Gry (V).

A B-field transformation cannot change the type of a Dirac structure, since
ePL(E,e) = L(E,e+ f*B).

However, a (-field transform can. Express a given Dirac structure L as L(F,v), with g : FF — V* an
inclusion, and v € A2F*. Let E = my (L), which contains LNV = Ann(F). Thus

E/LNV =E/Ann(F) =Im ~,

and so
dim F =dim LNV + rank ~.

Since rank -~y is always even, if we change v to v + ¢g*3, we can change dim F by an even amount.
The space Dir(V) of Dirac structures has two connected components, one consisting of those of even
type, and one consisting of those of odd type.

4.3 Generalized metrics

There is another way to see the structure of Dir(V). Let C1 C V @& V* be a maximal subspace on which
the pairing (-,-) is positive definite, e.g., the space spanned by e; + ¢, i = 1,...,n. Let C_ = C’j_‘ be the
orthogonal complement. Then (-, -) is negative definite on C_.

If L is a linear Dirac structure, then L N Cx = {0}, since L is isotropic. Thus L defines an isomorphism.

LICJF—)C,

such that —(Lz, Ly) = (z,y), since (x + Lz,y + Ly) = 0. By choosing isomorphism between Cy and R"
with the standard inner product, any L € Dir(V) may be regarded as an orthogonal transformation of R™,
and conversely. Thus Dir(V) is isomorphic to O(n) as a space. The two connected components of O(n)
correspond in some way to the two components of Dir(V') consisting of Dirac structures of even and odd
type.

Observe that because C} is transverse to V and V*, the choice of C is equivalent to the choice of a map
v :V — V* such that the graph I', is a positive definite subspace, i.e., for 0 #z € V,

(+7(z), v +v(x)) =~(z,z) > 0.

Thus if we decompose 7y into g + b, where ¢ is the symmetric and b the anitsymmetric part, then g must be
a positive definite metric on V. The form g + b is called a generalized metric on V. A generalized metric
defines a positive definite metric on V & V*, given by

<'a '>|C+ - <'7 '>|C,

Exercise. Given A € O(n), determine explicitly the Dirac structure L4 determined by the map O(n) —
Dir(V).
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5 Lecture 5 (Notes: C. Kottke)

5.1 Spinors
We have a natural action of V@ V* on A'V*. Indeed, if X +£ € V@ V*and pe A'V* let

(X+&-p=ixp+ENp.
Then

(X+8*p = ix(ixp+ENp) +EA(ixp+EAP)
= (ix&)p—&Nixp+ENixp
(X+&X+8p

where (,) is the natural symmetric bilinear form on V & V*:

(X +6Y ) = L (€(¥) +n(X))

Thus we have an action of v € V & V* with v?p = (v,v)p. This is the defining relation for the Clifford
Algebra CL(V & V*).
For a general vector space FE, CL(FE,(,)) is defined by

CL(E, () = R E/ (v & v — (v,0)1)
That is, CL(E, {,)) is the quotient of the graded tensor product of E by the free abelian group generated by
all elements of the form v ® v — (v,v)1 for v € E. Note in particular that if (,) = 0 then CL(E, (,)) = \'E.

We therefore have representation CL(V @ V*) — End(A'V*) = End(R?") where n = dimV. This is
called the “spin” representation for CL(V & V*).

Choose an orthonormal basis for V @& V*, ie. {e; £e!,... e, & e"}. The clifford algebra has a natural
volume element in terms of this basis given by

n(n—1)

w=(=1)"2 (es—e') (e, —e")(er+e) - (en+em).
Problem. Show w! = 1, we; = —ejw,we’ = —e'w, and w-1 = 1, considering 1 as the element in /\OV* acted
on by the clifford algebra.
The eigenspace of w is naturally split, and we have
ST =Ker(w—1) = A\"V*
S~ =Ker(w+1) = \°MV*
The e are known as “creation operators” and the e; as “annihilation operators”. We define the “spinors” S
b S=ANV*=8T® S~
Here is another view. V is naturally embedded in V & V*, so we have
CLV)=AV CCLVaV*

since (V,V) = 0. Note in particular that detV C CL(V @ V*), where detV is generated by e;---e, in
terms of our basis elements. detV is a minimal ideal in CL(V @& V*), so CL(V & V*)-detV € CL(V & V*).
Elements of CL(V @ V*) - det V are generated by elements which look like
(1,e',e%e,...) er1---eq
N————— N——
noe; = fedetV
For x € CL(V @ V*) and p € S, the action x - p satisfies xpf = (z - p)f.

Problem. Show that this action coincides with the Cartan action.
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5.2 The Spin Group
The spin group Spin(V & V*) C CL(V @ V*) is defined by

Spin(Vae V") ={vy v :v; EVBV* (v;,v;) = £,r even.}
Spin(V @ V*) is a double cover of the special orthogonal group SO(V @ V*); there is a map
p:Spin(V o V*) 2L S0V @ V)

where the action p(x) - v = zvz~! in CL(V @ V*).
The adjoint action in the Lie algebra so(V @ V*) is given by

dpy v — [z,0]
where [,] is the commutator in CL(V & V*), so
so(V @ V*) =span{[z,y] 2,y e VO VI = N2 (V @ V*).
Recall that A*(V & V*) = A’V* & A’V @ End(V), so a generic element in A\*(V & V*) looks like
B+ B+ Ae NV e A’V & End(V)

In terms of the basis, say B = B;je' Ael, f7e;Aej, and A = Agei®ej. In CL(V &V*), these become B;je'e’,
Beje; and %Ai (eje’ — e'ej), respectively. Consider the action of each type of element on the spinors.

(Bije'e’) - p=Bije' Nes Ap=—BAp
(8Yejei) - p=Bicyic,p = igp
Lo, i i Loigi (o i n L yisi J i 1 .
§Ai(eje —e'ej) ~p:§Ai(zej(e Ap)—e /\zejp):(iAiéj)pfAie Nejp = §TrA p—Ap
Given B € /\2V*, recall the B field transform e~?. This acts on the spinors via
5 1
e 'p:p+B/\p+gBAB/\p+-~

Note that there are only finitely many terms in the above.
Similarly, given 8 € /\2V7 we have

1
e’ p=p+igp+ Sigigp+ -
For A € End(V), e* = g € GLT(V), we have

g-p=1/det(g) (") - p

so that, as a GLT (V) representation, S = A\'V* @ (detV)/2.
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5.3 A Bilinear Pairing on Spinors
Let p,¢ € A'V* and consider the reversal map a: A'V* — A'V* where
G N = E N NG

Define
(p,®) = [ap) A ¢n € detV™

where n = dim V, and the subscript n on the bracket indicates that we take only the degree n parts of the
resulting form.

Proposition 3. Forz € CL(Va@V*), (x-p,$) = (¢, a(x) - ¢)
Proof. Recall that (- p)f = xpf and

(p,9) = ip(p,®)f
£ (

so (- p,¢) = a(zpf)of = alpfla(z)of = (p,a(x)¢). O
Corollary 2. We have
(v-p,v-8) = (pa(v)v-¢) = (v,v)(p, P)
Also, for g € Spin(V & V™),
(9-p,9-9)=+£1(p,9)

Example. Suppose n =4, and p, ¢ € A\°'V*, so that
p = po+ p2+ps

and similarly for ¢, where the subscripts indicate forms of degree 0, 2, and 4. Then «a(p) = po — p2 + ps and

(0, ) = [(po — p2+ pa) A (¢o + 2 + ¢4)], = pPoda + dopa — p2 A b2

Ifn=4and p,¢ € /\OdV*, then

(p, @) = [(p1 = p3) A (61 + ¢3)], = p1 A 3 — p3s A .

n(n—1)

Proposition 4. In general, (p,¢) =(—1)" =z (¢, p)
Problem. e What is the signature of (,) when symmetric?
e Show that (,) is non-degenerate on S*.

e Show that in dimension 4, the 16 dimensional space A\ V* has a non degenerate symmetric form
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5.4 Pure Spinors
Let ¢ € \'V* be any nonzero spinor, and define the null space of ¢ as
Ly={X+EcVaV": (X+E) ¢=0}
It is clear then that L, depends equivariantly on ¢ under the spin representation. If
p—g-o, g€ Spin(VaVr)

then
Ly~ p(g)Lg

where p : Spin(V @ V*) — so(V @ V*) as before. The key property of the null space is that it is isotropic.
Indeed, if z,y € Ly we have

2z, y)¢ = (zy + yx)p = 0.
Thus Ly C Lé.

If Ly = Lq{, that is, if Ly is maximal, then ¢ is called “pure”. We have therefore that ¢ is pure if and
only if Ly is Dirac.

Example. e Take g =e' A--- Ae”. Then L, =V*.

e Take 1 € A’V*. Then L; = V. For B € A\°V*, then e .1 =1-B+1/2BAB+---. So
LeB = GB(Ll) = €B(V) = FB.

e For § € V* fis puresince Ly = {X +£:ix0+ N0 =0} = Ker 0 @ (f) which is Dirac; indeed this is
what we called L(Ker 6,0).

e Similarly, considering e?0, we have L.s9 = L(Ker 0, f*B).

e Given a Dirac structure L(E, €), choose 4, ... ,0) such that (1, ...,6;) = Ann E. Choose B € \°V*
such that f*B =e. Then ¢ = e B A--- Ay is pure and Ly = L(E, ).

Problem. e Show Ly N Ly = {0} < (¢,¢") # 0.

o Let dim V =4, and p = po + p2 + pa # 0. Show that p is pure iff 2pgps = p2 A pa.

6 Lecture 6 (Notes: Y. Lekili)

Recall from last lecture :
S=AV*(X+E) - p=1xp+E&Ap. Mukai pairing (p, ¢) = [p A @(®)], Sping-invariant.

Dir(V) «— Pure spinors
Ly — é=ceBOy A N0k, k= type

Problem. 1. Prove that Ly N L;b = {0} & (¢,¢)#0

2. Let dimV = 4. Show that 0 # p = pg + p2 + p4 is pure iff 2pgps = pa A p2. Show in general dimension
that Pur = Pure spinors C S* are defined by a quadratic cone. Indentify the space P(Pur) C P(S*.)
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6.1 Generalized Hodge star
C positive definite. Cy : V — V* | C1(X)(X) > 0for X #0. Cp =Tyip, g € S?V* and b € A2V*. Note

that C'y determines an operator
G:VoV*—->VaopV*
(Gz,Gy) = (x,9),G®> = 1. So G* = G. G is called a generalized metric since (Gx,y) is positive definite.

-1
Note that if Cy =Ty : {v+g(v)} and C_ = {v — g(v)} then G = < 2 I . In general

0
Ci =T, =Ty s0

G = b 0 gt b — 1 0 0 gt 1 0\ —g b g !
o g 0 Wb 1 g 0 b 1 )\ g—bg'b bg!
Problem. Note that restriction of G to T is g — bg~'b. Verify that it is indeed positive definite.

Comment about the volume form of g — bg~'b = g¢° :

Note: g —bg~ b= (g —b)g~ (g +b) . So det(g — bg~1b) =det(g — b)det(g~*)det(g + b), and
det(g + b) =det(g + b)* =det(g — b). Hence vol, =det(g — bg~1b)1/? = g:;;((i;g%
Problem. What is volg /voly ?

Aside: detV*, choose orientation. detV* ® V* | natural orientation since square. detg(v ® v) > 0 so detg
has square roots. After choice of orientation on V, there exists a unique positive square root volg.

A generalized metric is given by G: V @& V* — V & V* such that G*> = 1,G* = G, (G(z),z) > 0.
Cy = ker(GF1).
Consider * = a3 ...a, where (aj,...,a,) is an oriented basis for C.. x eCL(Cy) CCL(V @ V*).

e x is the volume element of CL(C} )
e x is the lift of —G to Pin(V @& V*) = {v1...v, : ||v;]| = £1} (Spin if n is even)
e x acts on forms via x-p=aj...a, - p.

Consider b = 0 and e;, e’ orthonormal basis. Then x = (e; +e¢e!)... (e, + e"). Consider
a(*)=(en+e)...(e1 +el). a(x)l=e"A...ANel, a(x)el =e" A...A€2, .. ete. So,

ala(x)p) = *p, Hodge star.

n(n—1) n(n—1)

So a(a(x)p) is generalized Hodge star. Note that > = (—1)~ 2 and (p,¢) = (=1)~ =2 (¢, p). So
consider (xp, @) is symmetric pairing of p, ¢ into detV*. And note that if b = 0,

(xp,0) = (p, a()0) = [p N ala()9)]top = [p N *Pliop = 9(p, P)voly

When b # 0,G = e® ( 2 g;) ) e’ Sox=elx, et and (xp,¢) = (¥ x, e 0p, @) = (x,(e ’p)e~0¢). So

always nondegenerate for all b. Hence (xp, ¢) = G(p, ¢)(*1,1) with G(1,1) = 1 where G is the natural
symmetric pairing on forms.

Problem. Let eq,...,e, be g-orthonormal basis of V.

e Show (e; + (g + b)(e;)) form orthonormal basis of C.

o Show (+1,1) = det(g +b)(e1 A ... Aeg) = Jotok = volg

e As a result, show volgr lle=®||2
volg g
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6.2 Spinors for TM & T*M and the Courant algebroid
On a manifold M, T =TM, T*=T*M. T ® T* is a bundle with {,) structure O(n,n). S = A*T*.
Diff forms «—Spinors for T'® T™.

New element: d : QF — Q"' Recall [X,Y] is defined by ¢[x,y] = [Lx,ty] = [[d, tx], ty]. We now use same
strategy to define a bracket on T'& T™.

(X+8-p=(x+EN)p
So for e1,e9 € C°(T ® T*), define
([d,ex-], e ]p = [ex, e2]c - p
the Courant bracket on C*°(T @ T™*). Note [d,tx + (§A)] = Lx + (déA) and
[Lx + (dEN), oy + (MAN)] = yxy) + (Lxn)A) = ((by d)EA).
Hence
[[d,e1-],e2-]p = tix,y1p + (Lxn — vy d§) A
defines a bracket, Courant bracket :
(X +&Y + 0] =[X, Y]+ Lxn — tyds.

Note bracket is not skew-symmetric: [X + &, X +&] = Lx€ —i1xdé = dix§ = d{X + &, X +&). Tt is skew
”up to exact terms” or "up to homotopy”. However, it does satisfy Jacobi identity:

[la,b].c] = [a, [b, c]] — [b,[a, ]].
Proof: [d,-] = D an inner graded derivation on EndQ. D? = 0. [a,b]c - ¢ = [[d,a],b] - ¢ = [Da,b] Then
[la, bl cle - ¢ = [D[Da, ], c]¢ = [[Da, Db], c|¢ = [Da, [Db, d]] = [Db, [Da H = [, [b.lelc — [b, [a, clele.

It is also obviously compatible with Lie bracket.
ToT =T
[ ; ]C - [ ) ]

that is, [ra,wb] = 7[a, b]c.

Two main key properties :

* [a, fb] = fla,b] + ((za)(f))b.

Let a=X+&b=Y +1,
[(X+& f(Y+n)] = [X, fY]+Lx (fn) = fryd§ = fla, )] +H(X )Y +(X fn = fIX+E Y 4]+ (X f)(Y +n).

e How does it interact with (,) ? wa(b,b) = 2([a, b],b)

([a,0],b) = vx,yn + ty (Lxn — tyd§) = Lxtyn = %Lx<b, by = wa(b,b)
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Usually written : wa(b, c) = ([a, b],c) + (b, [a,]).
This defines the notion of Courant Algebroid:

(E,(,),[,],7) where E is a real vector bundle, 7 : E — T is called anchor, (,) is nondegenerate symmetric
bilinear form, [,]: C*®(E) x C*(E) — C*(FE) such that :

o [le1, ea], es] = [e1, [e2, €3] — [e2, [e1, e5]]
o [mey, mes| = mley, €3]
o [e1, fea] = fler, e2] + (mer) f)ez
o e (ea, e3) = ([e1, ea], e3) + {ea, [e1, e3])
o [e1,e1] = d{e1,e1)
F is exact when
0—=T*SEST 0

So T & T* is exact Courant algebroid.
This motivates Lie Algebroid: A = T, [,]: C*(A) x C®(A) — C>®(A) Lie alg. such that

e 7[a,b] = [ra,wb]

* [a, fb] = fla,b] + ((ma) f)b

7 Lecture 7 (Notes: N. Rosenblyum)

7.1 Exact Courant Algebroids
Recall that a Courant algebroid is given by the diagram of bundles

E——"——>T
NS
M
where 7 is called the “anchor” along with a bracket [, ] and a nondegenerate bilinear form ( , ) such that
e 7la,b] = [ra, b
e The Jacobi identity is zero
[a, fb] = fla,b] + ((mwa) f)b

e [a,b] = ir*d(a,a)

7ra<b, C> = <[aa b]v C> + <ba [CL, C]>

A Courant algebroid is exact if the sequence

s ™

0 T* E T 0

is exact (note that m o 7* is always 0).
Remarks: For an exact Courant algebroid, we have:
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1. The inclusion T* C E is automatically isotropic because for £,n € T*,
(n&,m"n) = &(v*mn) =0
since (7*¢,a) = &(7a).

2. The bracket [, |

7+ =0: for s,t € C®(E), f € C=(M),
D =n*d: C®(M) — C™(E)
Now,
([s,Df),t) = ws(Df,t) — (Df, [s,t]) = ws(nt(f)) — n[s,1)(f) = wt(zs(f)) = (D(Df,s), f)

Thus, [s, Df] = D(s, Df). We also have, [Df,s] + [s,Df] = D(Df, s) and therefore [Df, s] = 0.
We need to show that [fdz’, gdz?] = 0. But have [dz*,dz’] = 0 and

[a, fb] = fla,b] + ((wa) f)b, [ga,b] = gla,b] — ((wb)g)a + 2(a, b)dg.

7.2 Severa’s Classification of Exact Courant Algebroids
We can choose an isotropic splitting

O—T"———~—F_ —_——~—T—>0

*
S

ie. (sX,sY)=0forall XY € T. We then have F = T @ T* and we can transport the Courant structure
toT®T*: for X, Y € T and &,n € T,

(X +&4Y +n) = (sX + 77 sY +77n) = {(msY) + n(rsX) = (V) +n(X)
since (sX,sY) = 0. Also,

(X +&Y +n]=[sX+7%EsY + 7" = [sX,sY] + [sX,n%n] + [, sY]

We have that the second term is given by
w[s X, m*n] = [wsX, 7] =0
and therefore, [sX, 7*n] € Q. Further,
[sX, 7 n](Z) = ([sX, 7" n], sZ) = X (7", sZ) — (7"n, [s X, sZ]) = Xn(Z) = n([X, Z]) = izLxn

and so [sX,7*n] = Lxn.
Now, the third term is given by

(77, sY],52) = (=[sY,7"E] + D(sY,7"E), s2Z) = —(Ly§)(Z) + izdiy{ = (—iyd§)(Z)
and so [7*€, sY] = —iydE.

For the first term, we have no reason to believe that [sX, sY] = [X,Y] We do have that
m[sX,sY] = [X,Y]pie. Now, let H(X,Y) = s*[sX, sY]. We then have,

23



1. H is C*°-linear and skew in X,Y":
H(X, fY) = fs"[sX,sY]+ s"(X(f)sY) = fs*[sX,sY], and

H(fX,Y)=s"[fsX,sY]|=fH(X,Y) —s*(Yf)sX) + 2(sX,sY)df = fH(X,Y). Furthermore,
[sX,sY] + [sY,sX] = n*d(sX, sY).

2. H(X,Y)(Z) is totally symmetic in X,Y, Z:

H(X,Y)(Z) = ([sX,sY],sZ)g = X(sY,sZ) — (sY,[sX,sZ])

So, we have [sX,sY] = [X,Y] —iyixH for H € Q3(M).
Problem. Show that [[a,b], c] = [a, [b, c]] — [b, [a, c]] + trcinpiradH and so Jac = 0 if and only if dH = 0.

Thus, we have that the only parameter specifying the Courant bracket is a closed three form H € Q3(M).
We will see that when [H]/2m € H3(M,Z), E is associated to an S!-gerbe.

Now, let’s consider how H changes when we change the splitting. Suppose that we have two section
$1,82 : T — E. We then have that w(s; — s2) = 0. So consider B = s; — s9 : T — T*. In the s; splitting,
we have for x € T, sa(x) = (x + (s2 — s1)x). Since the s; are isotropic splittings, we have that

(s2 — s1)(z)(z) = 0. Thus we have, B € C>(A%*T™*).

Now, in the s; splitting we have,

[X+’izB,Y+in]H = [X, Y]+inyB—iydixB+iyixH = [X, Y]+’i[X7y]B—inyB+iydixB+iyixH =

In particular, in the sy splitting H changes by dB. Thus, we have that [H] € H3(M,R) classifies the exact
Courant algebroid up to isomorphis.
The above bracket is also a derived bracket. Before, we had that

[a” b]C P = [[dv (L], b]SD

Now, replace d with dy = d + HA. We clearly have that d%;, = (dH)A = 0 since dH = 0. Note that dy is
not of degree one and is not a derivation but it is odd. The cohomology of dy is called H-twisted deRham
cohomology. In simple cases (e.g. when M is formal in the sense of rational homotopy theory,), we have

* ev/o ev/od
H* (H (M), eq)) = Hyy/ (M)

where ey = HA.

Now, [a,b]m - ¢ = [[d#,a],b]e. Indeed, for B € Q2, we have ¢ +— eBp and

e B(d+ HN)eP = e PdeP + e BHeP = dy ap, and so eBle B eB.ly = [, |grap In particular, if

B € 921, then P is a symmetry of the Courant bracket.

This phenomena is somewhat unusual because for the ordinary Lie bracket, the only symmetries are given
by diffeomorphisms of the underlying manifold. More specifically, a symmetry of the Lie bracket on C°°(T")
is a diagram

P
_—

T T
L,
M—M

such that ¢ is a diffeomorphism and [®, ®] = [, -].



Claim 1. Sym[, |ric = {(¢«,9), ¢ € Dif f(M)}.

Proof. Given (®,¢) € Sym|, ]Lie, consider G : ®¢; L. Then G covers the identity map on M and we have
fGIX,) Y] - (YIGX =G[fX,Y] = fIGX,GY] — (GY)fGX and so Y f = (GY)(f) for all Y, f and so

G=1. O
Let’s now consider the question of what all the symmetries of the Courant bracket [, |¢ are. Once again,
we have a diagram
FE—2.F
|, |
M—M
where E ~ T & T™* such that
L ¢*(®, @) = ()
2. [®,P] = D, ]

3. Tod = ¢, om.
Suppose that ¢ € Dif f(M). Then on T & T*, ¢, is given by

o= (" (o)

and so we have ¢.(X + &) = ¢. X + (¢*) 1€ and

¢ [0 X + (97 0Y + () Ml = [X +EY +n)pen

since ¢ (i, vig.xH)(Z) = ig.zip.vie.xH = ¢*H(X,Y, Z). In particular, this does not give a symmetry
unless ¢o*H = H.

Now, consider a B-field transform. Since eZ[e=8- e B.]y = [-,-|g1ap, this is not a symmetry unless

dB = 0. Now we can combine these to generate the symmetries:

[x"-, pueP ] = 6ueP[, Jgemrran
and so ¢.eP € SymE iff H — ¢*H = dB. It turns out that these are all the symmetries.

Theorem 5. The above are all the symmetries of an exact Courant algebroid. In particular, we have a
short exact sequence
0— Q% — Sym(E) — Dif fim — 0

where Dif fig) is the subgroup of diffeomorphisms of M preserving the cohomology class [H].

8 Lecture 8 (Notes: J. Bernstein)

8.1 Dirac Structures
So far we understand the exact Courant Algebroids
0—-T"—-FE—-T—0

Which are classified up to isomorphism by [H] € H3(M,R3) and upon a choice of splitting is isomorphic to
(TeT<,>]um:E—T). For He Q3. Always consider (M, E) or (M, H). Geometry in exact
Courant Algebroids consists of studying special subbundles L C F.
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Theorem 6. Suppose that L C E a subbundle which is closed under [,] (involutive), i.e.
[C%°(L),C*°(L)] € C*(L). then L must be isotropic or L = 7~ Y(A) for A C T integrable distribution.
Note, for Ak C T, 7=1(8) is of dimension n + k and contains T* (so is not isotropic).

Proof. Suppose L is involutive, but not isotropic, then there exists v € C*°(L) with < v,v >,,# 0. Now
recall property [fv,v] = flv,v] — (7(vV)flv+2 <wv,vo>df =2 <wv,v>df € C°(L) for all f, as

[fv,v], flv,v] € C*°(L). This implies that df,, € Ly, for all m which tells us that T); C L,, but T* is
isotropic so L,, = 77 1(A,,) for A # 0. Thus tkL > n evertywhere and so L not isotropic at all points

p € M thus Ty C Ly, for all p and so L = 7~ '(A) where A is an integrable distribution. O

So interesting involutive subbundles are isotropic subbundles L C E. Recall that the axioms of a Courant
Algebroid imply that [a,a] = $7*d < a,a >. Thus on L, [,]¢|ce(r) defines a Lie Algebroid when L is
involutive and isotropic. So L C E with [L,L] C L and < L, L >= 0 implies that (L, [,],7) is a Lie
Algebroid which implies (C*°(A*L*),dy) gives rise the Hg, (M) the Lie Algebroid Cohomology.

Definition 14. When an isotropic, involutive L C E is mazximal it is called a Dirac Structure
Examples of Dirac structuresin 0 - 7* - E —- T — 0
o T* C Fas[T*T* C[T*,T

o If we split (T@T™,[,]x) then [X,Y]y € C°(T) if and only if H =0s0 T € T & T* is a Dirac
structure if and only if H =0

e Any maximal isotropic transverse L (that is such that L N T* = {0} is of the form L =T'p. Since
eB[e*B-, e*B-]H = [', ']H+dB SO GB[T7 T]Hde = eB[e*BI‘B, efBFB]H,dB = [FB, FB}H Thus
[Cp,T'p] C Tp]if and only if [T, T]g—qgp C T and this occurs if and only if H —dB =0so I'p is

Dirac when and only when [H] = 0. In particular when [H] # 0 there is no Dirac complement to 7.

e When A C T is an integral distribution then f: A @® Ann A — T @ T* is involutive for [,]x when
and only when f*H = 0.

e For (I'&T*,[,]x) and 8 € A*T we consider I'g. This is Dirac if and only if [3, 3] = —3*H where we
think of 8 : T* — T.

Problem. Verify the condition for I'g to be Dirac by first showing that [£ + 8(£),n + B(n)] = (+ 8(() if
and only if < [+ 6(£),n+ B(n)],¢ + B(¢) >=0. And then showing that

< [df + B(df),dg + B(dg)],dh + B(dh) >= {f,{g,h}} + {g,{h, f}} + {h. {f,g}} + H(B(df), B(dg), B(dh)) =
(Jac{, } + B*H)(df,dg,dh).

Definition 15. if [3, 3] = —3*H then (3 is called a twisted Poisson Structure.

Suppose that 3 is a twisted Poisson structure, then e? I'g is not necessarily I'g/, in particular if 3 is
invertible (as a map T* — T) and 3~ = B then e8Iy = T. However if B is “small enough” then
ePT3 = T'. To quantify this we note that e? : £ + 3(€) — B(€) + £ + BB(£) which we want equal to

1+ ' (n). This happens if and only if n = (1 + BS)¢ and also 8(€) = 5'(n) = /(1 + BB)E. Thus
B = B(1+ BB)~! and so smallness just means that the map is invertible (i.e. what is written makes sense).

Definition 16. The transformation from 3+ (1 + BB)~! is called a gauge transform of /3.

Problem. (Severa-Weinstein) Show that if 3 is Poisson and d = 0 then ' is Poisson. Also show that
Hj,(M) = Hj, (M), (i.e. one has a isomorphsm of Poisson cohomology. (Hint: e” : Ty — T'g is an
isomorphism of Lie Algebras).
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8.2 Geometry of Lie Groups

Recall that for a Lie group G one has a natural action of G x G on G, given by (g,h) - © = gzh = LyRpx
(here one has a left action and a right action). These actions commute in that (gx)h = g(zh). Now for

g = T.G the lie algebra of G one has two identifications of g — T,G namely a — a’|, = (L,).a and

a — afl; = (Ry).a where al’, o’ are left and right invariant vector fields respectively. We have by
definition [a%,b%] ;e = [a,b]*. Now if j : G — G is given by z — 2!, then jL, = R,-1j so

j*(Lg)* = (Ry-1)+Js. In particular since (j.). = —Id, one has

(jra®),— —j*(Lg)*a = (Ry-1)sjsa = —(Ry-1)sa = —aR\gfl. Thus j.a” = —a’. Thus

[a® bB] = [j.al, j.bF] = jila®, bL] = ji[a,b)F = [a b]®. One also has [aX, b®] = 0. To see this we note
that the map g — C*°(T'G) given by a +— aL|g t(gv( )) exponentiates to a right action R, similarly

a® exponentiates to a left action and so [a”, b

=0.
We now define Ad, : g — g by Ady(X) = (Ry-1)+(Lgy)«. Equivalently a®|; = (Ad,-1a)"|,. We define
adx = d(Ady)o = [X, ]

Lemma 1. If p € QF(G) is bi-invariant then dp =0

Proof. If p is left invariant then p € AFg* and so

dp(Xo, ..., Xz) :Z( 1! X;p(Xo, ..., X, +Z )" p([ X4, X, Xo, -+, X
, where we have chosen Xy, ... X} to be left invariant so the first sum is zero . On the other hand right
invariance tells us that for all X, >~ p(Xy,...,[X, X;],..., X%) = 0. O
Problem. Show how the statement above implies that dp = 0.

We define Cartan one-forms to be forms 6%,6% € Q'(G,g) by 0% (v) = (Ly-1).v € g. and

0 (v) = (Rg-1)«v € g. So 0F o (Ly-1). = 0f,. Thus 6% is left invariant as 67 is right invariant.

For G = Gl,,, g = M,, one has 0 = g~'dg and 6% = dgg~'. Now if g = [g;;] that is g;; are coordinates one
gets matrix of oneforms [g;;]7*[dg;;]. Then (cg)~'d(cg) = g~'o " odg = g~'dg, and so it is left invariant
(similarly one can check that the obvious definition is indeed right invariant). At 1 € GL,, one has g
consisting of n x n matrices {[a;;]} here we make think of [a;j] =3, ; aij%“. SO

g_ldg(zm. aij%) =a;j, so g~ 'dg|. = Id : g — g. This is also true for 6% and 0%.

9 Lecture 9 (Notes: K. Venkatram)

Last time, we talked about the geometry of a connected lie group G. Specifically, for any a in the
corresponding Lie algebra g, one can define a’'|, = L,.a and choose 8L € Q1(G, g) s.t. 6% (al) = a. For
instance, for GL,,, with coordinates g = [g;;], one has 6% = g~'dg, and similarly 6% = dgg~!.This implies
that dg A 0L + gd0F =0 = dOF + 0 NOF =0 = dO* + %[GL, 6%] = 0, the latter of which is the
Maurer-Cartan equation.

Problem. 1. Extend this proof so that it works in the general case.
2. Show j*0f = —6*~.
3. Show df® — 167, 6%] =0
4. Show 0%(al)|, = Ad jaVa € g,g € G.
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9.1 Bilinar forms on groups

Let G be a connected real Lie group, B a symmetric nondegenerate bilinear form on g. This extends to a
left-invariant metric on G, and B is invariant under right translation

< B([X,Y],Z) + B(Y,[X, Z]) = 0VX,Y, Z. If this is true, we obtain a bi-invariant (pseudo-Riemannian)
metric on G.

Remark. Geodesics through e are one-parameter subgroups < B is bi-invariant. See Helgason for
Riemannian geometry of Lie groups and homogeneous spaces.

Example. Let B be the Killing form on a semisimple Lie group, i.e. B(a,b) = Try(ad,ads) for
S|m, 5 © M, 5Py, a constant multiple of Tr(X,Y"). Now, we can form the Cartan 3-form

1 1
H = 55 B(0",[0%,0%)) = 1;B(0", 0%, 6") (7

This H is bi-invariant, and thus closed. When G is simple, compact, and simply connected, the Killing
form gives \[H] as a generator for H3(G,Z) = Z. (See Brylinski.) For instance, given g = sl,,, 0% = g~ 1dg,
one has H = Tr(0F A 0L A 0F) ie. H = Tr(g~tdg)3.

9.1.1 Key calculation
Let m,p1,p2 : G X G — G be the multiplication and projection maps respectively. Then
m*H = Tr((gh) " d(gh))® = Te(h™ g~} (gdh + dgh))?
= Tr(h~'gh)® + Tr(g~'dg)® + Tr((dhh~')*g~'dg) + Tr(dhh =1 (g~ dg)?)
Now, define §# = dhh™!,Q = g 'dg, so dd = O A0 and dQ2 = —Q A Q. Then
dTr(dhh™ g tdg) = dTr(0 A Q) = Tr(dO A Q2 — 0 A dRQ) )
=Tr(0ANONQ+ONQAQ)

So, m*H — ptH — p5H = dr, where 7 = Tr(dhh~1g~tdg) = B(pi6%,p50%) € O%(G x G).

Now, recall that given a metric g : V. — V*, we have a decomposition Ve V* =Cy & C_ for Cy =T4.
Moreover, any Dirac structure L C V @ V* can be written as the graph of A € O(V, g) thought of as
A:Cy —C_. NOw, for X € V,let XT = X +gX € Cx. Then L{ = {X* £ (AX)"|X € V} are the
Dirac structures. Note that

(X* £ (AX)", X+ £ (AX)7) = g(X, X) — g(AX, AX) = 0 (10)

Let B be a bi-invariant metric on G. Then the map A, = Ly-1, Ry : T,G — TG, a” — a® is orthogonal
for B and ad(G)-invariant, since

A(E

e .G
adg*i \Ladg* (11)
A 1

Typg—1G 25Ty G
where adg. = Lg«Rg-1,. Thus, we find that

adg. Agad,, = LyRy-1RyLy-1RyLy-1 = Ly-1,-1,Rypg-1 = Ay (12)

Overall, L+ (A) are ad(G)-invariant almost Dirac structures in (T @ T%)(G). T, G is spanned by the a”, so
L. is spanned by (a®)* + (a¥)~ = al + B(at) + a" — B(a®) and Ly = (al + af* + B(al — a’?)). Recall
that 6% (a®) = a so {a* + af* + B(a® — af?)) = (al + o’ + B(0L — 6%, a)). Similarly,

L_ = (a* —a® + B(0* + 6", a)).
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Remark. Since a — a® generates the adjoint action, [a® — a® bl — bF] = [a,b]L — [a, b]F. But
[af + aft b + bF] = [a,b]L + [a,b]T is not integrable. L_(A) is integrable, however, w.r.t. the Courant
bracket twisted by H = B(6%, [6F, 6%]).

10 Lecture 10 (Notes: K. Venkatram)

Last time, we defined an almost Dirac structure on any Lie group G with a bi-invariant metric B by

Lo = (aL —af' 4+ B(aL + aR)|a €g) (13)

10.1 Integrability

Lemma 2. d(B(a%))(z",y") = 2 B(a",y") — y" B(a,2") — B(ak, (%, y]) = —ios H(z",y"), where
H(a,b,c) = B(a®,[b", cL]).

Problem. Show that B(6%, [0F, 0%])(a®, bL, L) = 6B(ak, [bL, cF)).

Note also that
dB(a")(z",y") = —B(a®, [27,y"]) = in H (2", y") (14)
Now,

[af —a® + B(a® + a®),b" — b + B(O" 4+ b7)]o = [a, 0] — [a,b)® — iyr_prdB(a” + a®) + L,_,n B(b" + b%)

= [CI,, b]L — [a, b]R + e _prigr _qr H + B([a, b]L + [a, b]R)
(15)

Corollary 3. L¢ is involutive under [,]g.
Comments about the Cartan-Dirac structure:

1. a® — a® generates the adjoint action so generalized, and Lo = A is a foliation by the conjugacy
classes.

2. T* component is B(a” + a®), which spans T* whenever g — Ty,a— al + a't is surjective & (ad, + 1
is invertible. This is true, in particular, for an open set containing e € G.

In this region, L. = I'g for an H-twisted Poisson structure.
1. Determine explicitly the bivector G when it is defined.

2. For G = SU(2) = 83, describe the conjugacy classes and the locus where adg + 1 is invertible, rank 2,
rank 1, and rank 0.

3. Determine the Lie algebroid cohomology H*(L.). Hint: g — L., a +— a* — a® + B(a* + af) is
bracket-preserving.

10.2 Dirac Maps

A linear map f : V — W of vector spaces induces a map f, : Dir(V) — Dir(W) (the forward Dirac map)
given by fiLy ={fiv+ne W e W*|lv+ f*n € Ly} and a map f* : Dir(W) — Dir(V) (the backward
Dirac map) given by f*Lyw ={v+ ffne Ve V*|fiv+n € Lw}.
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Example.
Be A*V. Then

[Lg={fsv+nlv+ fn=p0(&) +EV e V') = {f.B8fn+nnec W}
={(f«B)n) +n} =Ty

so fx coincides with the usual pushforward.
L=L(E,e),f:E—V,ee€ /\2 E*. Then L is precisely f.I'¢ via the pushforward £ @ E* — V @ V*.

(16)

In general, L = L(F,~),F C V*,v € /\2 F* is equivalent to specifying
(C=Am F = LNV, N> F* = N*(V/LNV) = AN*(V/C)). Note that (foLy) W = f.(Ly N V).

Problem. f.L(C,v) = L(f.C, fy).

This proves that pushforward commutes properly with composition.

10.3 Manifolds with Courant Structure
Let (M, Hyy), (N, Hy) be manifolds equipped with H € Q3)cl-structure.

Definition 17. A morphism ® : (M,Hy;) — (N, Hy) is a pair (¢, B) for ¢ : M — N a smooth map and
B e O*(M) s.t. *Hy — Hyy = dB, i.e. B gives an isomorphism ¢*Gyx — G-

Now, suppose that Lyy CTM @ T*M,Ly C TN @ T*N are Dirac structures.
Definition 18. ® is a Dirac morphism < ¢.e®Ly = Ly .

If Ly is transverse to 7% M, then a Dirac morphism to (N, Hy, Ly) is called a Dirac brane for N: this
object is important because ¢*G is trivial.

Example. Let Ly be a Dirac structure, and let M C N be a leaf of A = nLy. Then

Ly = L(A,e € A> A*) and so € € Q2(M). Furthermore, integrability means that de = H|;, hence
(M,e) — (N, H, L) is a Dirac brane. So any Dirac manifold is foliated by Dirac branes, and for G, is
foliated by conjugacy classes C' and 2-forms e € Q2(C) called GHJW
(Guruprasad-Huebschmann-Jeffrey- Weinstein) 2-forms.

Theorem 7. (m,7): (G x G,piH +psH) — (G, H) is a Dirac morphism from Lo X Lo — L¢, i.e.
m*eT(LC X Lc) = Lc.

Proof. Set p(a) = a* —a”, o(a) = B(G'L + aR)7 so [p(a), p(b)] = p([a,b]), [p(a),o(b)] = o([a,b]), and
do(a) = —iyq)H. Then

¢’ (Lo x Le) = ((p(a), p(b)), (0(a), o(b) + ip(a).p(b) ) (17)

We want to show that this object contains L, so choose (X, ) € Lelgn, X = p(x),£ = o(x). Want to find
a.bst. X = m.(p(a), p(b)) and m*o(z) = (0(2).0()) + iya) o7
I m*‘(gih)) = [Rh*aLg*] and

p(x)g \ _ (Lge — Rge )
My ( > =( Ry- Lg ) ( (Lpy — Ry ) ) (18)
= (Rn+(Lgx — Rg=) 4 Lgu(Lns — Rn+))x = p(2)gn
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I Want to show m*c(z)gn = (0(a)g, 0(b)n) +ipa),.p),T- At gh, we have that

ol

m*o(x) ( bE ) = o(z)(Rp.a® + Lg*bL) =o(z)(af* +b1) = Bzl — 2B, a® 4 b1) (19)

Then

and the rest follows.

This leads to a fusion operation on Dirac morphisms: given ®; : M; — G, ®5 : My — G, composing the
product with (m, 1) gives &1 ® ®9 : M1 x My — G.

Example. Given two copies of the map m : G x G — G, obtain m ® m : G* — G: more generally, get
Dirac morphisms M®" : G?* — @G. This is used by AMM to get a symplectic structure on the moduli space
of flat G-connections on a genus h Riemann surface.

By Freed-Hopkins, fusion on branes implies a form of fusion on K7(G).

11 Lecture 11(Notes: K. Venkatram)

11.1 Integrability and spinors
Given L C T @ T* maximal isotropic, we get a filtration 0 C K, = FO C F1 C --- C F" = Q*(M) via
Fk = {y: /\kJrl L - ¢ = 0}. Furthermore, for ¢ € K, we have
X1 Xodp = [[d, X1], Xa]¢ = [X1, X2 (21)

for all X1, Xy € L (where d = dy). Thus, in general, d¢ € F3, and L is involutive < d¢ € F1.
Now, assume d(F?) C F*3 (and in F™+!if L is integrable) Vi < k and 1 € F*. Then

(X1, XoJy = [[d, X1], Xo]tp = dX1 Xotp + X1dXotp — XodX ¢ — Xo Xadyp
X1 Xodp = —dX 1 Xotp — X1dXotp + XodX19p + [ X1, Xo]tp

Note that, in the latter expression, each of the parts on the RHS have degree (k—1)+2=k+ 1, so
diyp € F**1if L is integrable and F**+3 otherwise.
Next, suppose that the Courant algebroid F has a decomposition L @& L’ into transverse Dirac structures.

1. Linear algebra:
o I/ L*via (-).

e The filtration K;, = F° C F! C --- C F™ of spinors becomes a Z-grading
Kro(lL K@ (AL -Kp)®-- @ (det L' - Kp), i.e. BN L)KL.

Remark. Note that L' - (det L' - K,) =0,sodet L' - K, =det L* ® K, = K.
Thus, we have a Z grading S = @} _, Us.
e If the Mukai pairing is nondegenerate on pure spinors, then K ® Ky, = det T*.
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2. Differential structure: via the above grading, we have F*(L) = @fzo U, F*(L) = @fzo Up—;, SO
d(Uy) = d(F*(L) " F*~*(L'). By parity, dUy NUy, = 0, so a priori

d= (Tp—3+ Tp—1+Tht1 +Tpe3)od=T + +0+T (23)

Problem. Show that T' : Uy — Uk_3,T : U, — U3 are given by the Clifford action of tensors
T e N°L,T e N L*.

Remark. This splitting of d = dy can be used to understand the splitting of the Courant structure
on L @ L*. Specifically, d> =0 =

—4 T +9'T' =0

-2 () +T'0+ 0T

0 900 +00+TT'+T'T (24)
2 P +T9 +0'T
4 TO+0T =0

11.2 Lie Bialgebroids and deformations

We can express the whole Courant structure in terms of (L, L*). Assume for simplicity that L, L* are both
integrable, so T =T’ = 0. Then

1. Anchor 7 — a pair of anchors 7 : L — T, n' : L' — T.
2. An inner product — a pairing L' = L*, (X + ¢, X + &) = £(X).

3. A bracket — a bracket [,] on L, [,]. on L*. Specifically, for z,y € L, ¢ € Uy,
[z,y]¢ = [[d, z],y]¢ = zydp = xy(0 + T)p = xyT o = (i1, T)d (25)

The induced action on S is dpa = [0, ], giving us an action of L on L* as wp«[z,&] for x € L, € € L*.
Expanding, we have

[z,&]¢ = [[0, 2], €]¢ = 0x8p + 20EP — ExDP — (i:€)0
= 0(i&) ¢ + 2(dp&)d — (1.6)0p = (dpiné +ipdr &) = (L&)

If T =0, then 2 — L, is an action (guaranteed by the Jacobi identity of the Courant algebroid). If L, L’
are integrable,

(26)

Le[&nle = wr-[a, [§,m]] = mi-([[2, €], 0] + (€, [, 1)) (27)
Problem. This implies that d[-, ]« = [d-, ]« + [, ]«
As a result of these computations, we find that, for XY € L, {,n € L*,

[X +€7Y + 77] = [X’ Y] + [X’ TI]L + [S,Y}L + [&777] + [SvY}L* + [Xa U]L*

28
:[X,Y]+L5Y—ind*X+[fﬂ?]—FLXn—iydf ( )

There are no H terms since we assumed 7' = T’ = 0. Overall, we have obtained a correspondence between
transverse Dirac structures (L, L') and Lie bialgebroids (L, L*) with actions and brackets L — T, L* — T
s.t. d is a derivation of [,]..
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Finally, we can deform the Dirac structure in pairs. Specifically, for e € C*°( /\2 L*) a small B-transform,
e‘(L) = L, one can ask when L. is integrable. We claim that this happens < dpe + %[e, €]l = 0. To see
this, note that

([e°z, ey], e2) = ([e“z, Y], €2) + ([e“m, eY] L+, €°2)
1 (29)
= (dLe)(xa Y, Z) + 5[6’ 6]*($, Y, Z)

via an analogous computation to that of e?T and e™T* from before.

12 Lecture 12-17(Notes: K. Venkatram)

12.1 Generalized Complex Structures and Topological Obstructions

Let E = (T @ T*, H) be an exact Courant algebroid.

Definition 19. A generalized complex structure (GCS) on E is an integrable orthogonal complex structure
J:E — E, ie amap s.t.

e (JA,IB) = (A, B)
o L =Ker (J—1il)

Note. 1. (JA,B) = (J?A,]JB) = —(A,IB), and thus (J-,-) is a symplectic struction on E compatible
with (,).

2. L is maximal isotropic and so is L, and thus £ = L & L = L @ L* and we get a Lie bialgebroid.

3. V must be even dimensional: letting x € V @ V* be a null vector then (Jz,z) = 0 and (Jz,Jz) =0,
so we can always enlarge a null set by 2 vectors; thus the maximal null set is even.

At the level of structure groups, (T'® T*, (,)),J corresponds to
0O(2n,2n) — U(n,n) = O(2n,2n) N GL(2n,C).

Problem. Show that O(V @ V*) acts transitively by conjugation on a set of GCS

O(2n,2n)

5% U(n,n)

Example. 1. J= < d g ) acting on V@ V*.

!
2. J=<w ) acting on Ve V*.

3. Any conjugation AJA™! A € O(2n,2n), e.g. eJe™ !,

(300 ) )-(5 ) 5)(ontar )
()G )G aeE (5
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Lemma 3. O(n.n) ~ O(n) x O(n).

Proof. Let Cy C V @ V* be positive definite and C_ = Ci-. THen O(n,n) acts transitively on the space of

all C, with stabilizer Stab(C4.) = O(n) x O(n). Question: what is %? C', (see diagram below) is

given by A : R® — R",||Az|| < ||z||Vz, i.e. ||A]|op < 1. Thus, it is the unit ball under the operator
norm. O

Lemma 4. U(n,n) ~U(n) x U(n)

Proof. We can enlarge C. to C. by adding V L Cy and JV, and get complex decomposition
E=Cy&Cf=Cy+C_. U(n,n) acts transitively on these spaces with stabilizer
Stab(Cy) = U(n) x U(n). As above, we obtain the unit ball in C™. O

Thus, the existence of J is topologically equivalent to the reduction to U(n) x U(n), i.e. complex structures
Ji :=1J|c, on Cy and C_ = C7 (since the bundle of positive-definite subspaces is contractible).

Note. The projection 7 : C1 — T is an isomorphism, so we obtain almost complex structure Jy : T — T.

Thus M must be almost complex, and J has two sets of Chern classes C?E € H*(M,Z) associated to Jy
(ie. ¢ =¢i(cx)) and (T & T*,J) = ¢(Cy) Ue(C).

Remark. Topologically, E has structure group U(n,n) ~ U(n) x U(n), so the bundle is classified by
Y : X — B(U(n) x U(n)) = BU(n) x BU(n) = C*" x C~ with Chern classes ¢*C*,¢*C~.

Now, spaces L C T @ T* correspond to canonical bundes Ky C Q*(M).

Proposition 5. A generalized complex structure is equivalent to a complex Dirac structure of real index 0,
i.e. to a Dirac structure L C (T ®T*)®C s.t. LN L = {0}.

Proof. «: given L, set J = i|r, + (—i)|z, and obtain
{J(a+B),I(a+ B)) = (ia —iB,ia — if) = (@, B) + (B,a) = (a + B, a + 5) (32)
—: given J, set L = Ker (J —i1), so
(a,8) = {Ja,JB) = —(a, ) =0 (33)
O

Therefore, (T & T*) ® C = L & L, and we obtain a transverse complex Dirac structure. This gives us a
Z-grading on S ® C = Q*(M,C) as

(KL = Z/{n) OUp—1D - @u—n—&-I 52 (u—n = Kf) (34)

with conjugation exchanging Uy and U_y.
Definition 20. K; =U_, is the canonical line bundle of the generalized complex structure.
Furthermore, the decomposition dg = 9 + 0 gives the general Dolbeault complex via 0 : Uy, < Uy_1 : 0.

Problem. Use the Mukai pairing between K, and K, to show that 2c;(Kp) = ¢} + ¢ .
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12.1.1 Z-grading on spinors

Let J be a generalized complex structure: then J € so(7' @ T*). The transformtation e?? behaves like e*
and thus defines an S* action on T'@® T* and thus, by the spin representation, on on 2*(M) (in fact, we
can imagine this as cos# -1+ J -sin#). Just as (T @© T*) ® C decomposes as L @ L, we have

J(z,¢) = [J,2] - ¢+ x - J¢, where [J, x] is the so-action. Thus, for an eigenvector = € L, Jx = iz, then
Jxé = xJ¢ + i¢. That is, the action of L increases by i, while L decreases by i, givng us a diagram

L L
—_— —
Kf =U_, u7n+1 te Un—1 U, = Ky, (35)
L L
Since the eigenvalues are symmetric, they must be {—ni, (—n +1)i,...,ni}, with U}, the ik-eigenspace of J.

Now, via the decomposition dy = 0 + d, we can form another real differential operator
d’ =[d,J] = [0+ 0,]]. Applying this to ¢* gives

[d, J)¢* = ik(D + D) — i(k + 1)d¢ — i(k — 1)dp = i(D — D) (36)

Thus, d¥ = i(0 — 9), and (d*)? = 0 as desired. B
For each GCS, we obtain three complexes: (C*°(A\" L*),dy) and the pair (U*,d), (U*, D).

Proposition 6. (C®(A\" L*),dy) is elliptic.

Recall that in general, this is not true. In particular, in the case of Poisson structures, the complex is
infinite dimensional.

Proof. Since L is a Lie algebra, we obtain a symbol sequence
k+1

k/_\l L* _,Se /k\L* _,Se /\ L* (37)

where S¢(¢) = 7" A ¢ for a given £ € T* real. If £ # 0, it can be decomposed as a+@ € L @ L with a # 0.
Moreover, for x € L, we have

(&) (z) = £(mz) = (€, 2) = (a + @, z) = (@, z) (38)
so m*¢ = @ is nonzero. O

Corollary 4. H*(L), H*(L) are finite dimensional on compact generalized complex manifolds.

For the other complex, we have that dy (f¢) = df AN ¢+ fduo = (drf +dpf)é + fdug, so that
o(fe) = (drf)o + fO9.

Problem. Using the right derived bracket, show that (dpz)- = [0, 2] for z € C®(\" L*).

By the above, we have a symbol sequence ¥~ «5¢ /¥ 5S¢ 1f*+1 given by the anihilation operator
Se(¢) = @¢ which is also an exact sequence. Doing a similar procedure for 9, and following the above logic
(replacing the Clifford action with the wedge product), we obtain:

Corollary 5. Hg(M),Hg(M) are finite dimensional for compact generalized complex manifolds.

Remark. One has a spectral sequence HY 5(M ) = Hj_(M). Moreover, this spectral sequence is trivial

(ie. Hj, = H5(M) if the 00-lemma holds for M: if da = 0 and a = 93, then a = 99 for some . In
other words,

Im 0 NKer d =Ker 9N Im d = Im 99 (39)
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Finally, we obtain actions of H*(L), H*(L) on HX(M), H;(M) respectively via

k
Oz -¢) = (dpx) - ¢+ (=1)*x- ¢,z € /\L (40)
Problem. Show the above statement.

This statement implies drpz = [0, 2], so dpz = 0,06 =0 = J(x - ¢) = 0, making the action well-defined.

12.1.2 Complex Case
—J

Given an almost-complex structure J, we obtain a generalized complex structure J; = g ) We
claim that J; is integrable w.r.t. [,] < J is integrable. To see this, decompose L = Tp ; @ 17, and choose
elements z,y € Ty 1,§,m € T7y. One obtains

[xa y] + Lyn — Zyd€ = [mv y] + ixgn - Zugf (41)

where [z,y] € Tp1 < J is integrable, and L,n = i,dn = i,(0n + dn) = i,0n because 91 € /\2 Ty, and thus
does not survive 7.

Remark. Adding a term i,%,H to the above expression, where H # 0, we find that
iziyH €Ty oVa,y € Ty & H©3) =0, i.e. the gerbe is homogeneous. This is similar to the fact that
FZ9 =0 for (L, V) holomorphic.

We have two different complexes:

1. First, the complex (C*(A\* L*),dr), where

k p p
AL = @ (AT ® (ATsy) (42)

ptg=Fk
and the differential map is given by the individual partials

p+1

p P P
9:C*(N\Tow \NTg1) — C(A\Tio® N\ Tiy) (43)
That is, each of the bundles /\p Th,0 has a B operator and dy, is their sum. This implies that

P k—1
HYL)= @@ HY(N\Tio) =H (NTio) @ H' () Tio) @ & H(O) (44)
p+q=k

2. Second, we have the complex (4*,0) as defined above. Note first that, being the canonical bundles,
we have that K =U" = \" 17 = Q™0 (similarly, KT =U"" = Q™% By the decomposition
L =Ty, +17Y,, we find that L acts on each Q%! by either increasing k or decreasing [, giving us our
sequence as the decomposed Hodge diamond

QO’O
QO,n—l Qn—l,O
Qlin . : - Qnil
Qmn

Ky =% 00 =Ky (45)

That is, U* = @p_q:k QP-4 with the boundary maps given by the usual ones on 2 and
Hg(M) = @pfq:k H@dg(M)
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12.1.3 Symplectic Case
—wt
w

) . Given an

Given a symplectic form w, we obtain a generalized complex structure J, = <

o x
i-eigenvector ( ¢ >, we have

w(@) —w () =iz +if = in=w(r) (46)

Thus, L ={z —iw(z) : 2 €e T®C} =T_;,, where I'_;,, denotes the graph of —iw : TQC - T*®C, is a
simple Dirac structure. Moreover, Q, is integrable w.r.t. [,|g < dgo = 0. In our case, we have
d(—w) = —H A (—iw), so dw and H must be 0 (i.e. w is symplectic). We again get two complexes

L (C*°(A" L*)dL) = (C®(\"T* @ C),d) is trivial, and H*(L) = H},(M). However, one does have a
nontrivial Gerstenhaber structure (C°°(A\* L*),dr,[,]+), and one has an equivalence between (L, L)
and (T'® C,T"(p,,)-1) (the Lie bialgebroid of a complex Poisson structure).

2. The ends of the complex (U*,d) can be simply exhibited as K, = (¢™), K = (e~*). The next term
can be computed via

UM = (X —iwX)e ™ = —iw(z) Ne ™ —iw(z) Ne ™ =™ . Q! (47)

071
The higher terms are more complicated: given general invertible o, the transformation e~ “e 2z on
TeT*sends T - T, (ie. 1 »e?)and T —T'_, (ie. Q" — e~ 7). Thus, we find that

ut = eiwe%Q”_k (48)

Letting L, A denore the maps ¢ +— w A ¢, ¢ —= —i,—1¢, we obtain the expression U* = elLe= 2k,

-1
These maps arise via the decomposition of J as ( W > + ( w ) Setting

wew (80 (10) (0 ) o

we find that [H, L] = —2L and [H, A] = 2A. These are precisely the s[oR commutator relations,
giving us associated actions on the symplectic manifold. In particular, H acts as

Ho = %tr(id) — (id*)¢ = sum(n — k)med (50)

where 7, : Q — QF is the projection. Via our decomposition of J, we find that

d? =[d,L+ A] = [d,A] = § is a degree —1 operator with §2 = 0 (called the symplectic adjoint of d)
and 0 = d —i6 : U* — U*~1. Using an analogous dd (or 99) lemma for symplectic manifolds, we find
that any cohomology class oo € H}j; has a d-closed representation (since da = ddy and d(a — ) = 0,
implying that 6(a — dy) = 0). Thus, setting & = a — 7, we find that

[d, J]alpha = 0 & [d,A)Ja@ =0 = d(/\ &) = 0. These statements combine to give an action of (L, A)
on cohomology, i.e. an sloR action on H*(M). Furthermore, L"~* : H*¥ — H?*"~* is an isomorphism,
implying an equivalence between the dd-lemma and the Lefshetz properity (see Cavalcanti thesis for
<).

37



12.2 Intermediate Cases

We have studied
J
JJ - < 7(]* ) 7JW

What about the intermediate cases?

I
7N
|

g &
L
~_
‘o
=

e intermediate types and spinors
e Poisson structure
e Local form

e Examples of type jumping by deformation

interpolation

Given a complex bundle T* — E —™ T, let J O E with JT* = T*. Then T* C FE is a complex subspace,
and E/T* = T obtains an almost complex structure J which is integrable. Furthermore,

(JO(X) = (J&, X) = ~(¢,13) = £(J) = —T*¢(X) (52)

ie. Jlp = —J*.
12.2.1 Complex and Symplectic Decompositions
Let S : T — FE be any splitting, i.e. m o s = id|p. Then we can produce a complex splitting by averaging

1

5(5’ —JsJ) =5 (53)
Note. 7(—JsJ)(X) =m(=J(s(JX))) = —J*>X = X, so —JzJ is a splitting.
Observe that, in splitting S’ : E — T @& T™*, we obtain J = ( 7 g >

Problem. Write J is a non-complex splitting using S. Hint: what is the difference between the splittings

S and —JSJ?
Finally, assume that JT* N T* = {0}. Then E = T* & JT* and, in this splitting,

J:(w ‘”4) (54)

where w(X,Y) = (Jz X, 2Y).

12.2.2 General case

In general, T* + JT* is a complex subspace of F, asis T*NJ*T* C T* +JT* C E.
Definition 21. A = 7(T* + JT*) = nJT*.

Note that

Ann A = (T* 4+ T NT* =T*NIT*NT* =T*NJT* (55)

is complex, and IZIIIMX >~ A* @ry3 A has symplectic structure. Also, E/(T* + JT*) = T'/A has a complex
structure, with complex dimension k (called the type).
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Theorem 8. M 1is generally foliated by symplectic leaves with transverse complex structure.
Lemma 5. JT* is Dirac.
Proof. Observe first that the +i eigenspace is closed, i.e.

z—iJz =[x — iJz,y — iJy]
[z,y] — 3z, Jy] — i([z, Jy] + [Jz, y])

= [z, y]
(2, 3] + 02, 9] = J[e, ] — I[J, By (%6)
Jz,Jy] = [z, y] + I([=,Jy] + [J=,y])
Thus, [J¢,In] = [, 1] + J([&, In] + [T, n]) = Ja (note that mta =0 = a € T*). O

Problem. Show that Ny(z,y) = [Jz,Jy] — J[z, Jy] — J[Jz,y] — [z, y] is tensorial and express it in terms of
T, 7.

Problem. e/ T is Dirac V6. Hint: e®T* = ((cos@ - 1) + (sin0)J)(T*) = (1 + tan 6])T*, and

[€ + 13, m + tIn] = t([€, In] + [J€, n]) + 2I([€, In] + [, n)) = (1 + D) (¢([€, In] + [T€, ) (57)
Lemma 6. For small 0, e®*T* is a twisted Poisson structure in a splitting satisfying [r, 7] = /\3 mH.

Taking the derivative -Z(e%’T*) at § = 0, we obtain a tangent vector to Dir(T'@® T™*) at T*: this is a skew
map T* — T, i.e. an element 7 € C°(A*T) s.t. [0, 07] = 037*H —> [r, 7] = 0. Thus, (1) =m,
and 7 : £ — wpJ€ is a Poisson structure, and we can split

J= (;‘,‘ . ) (59)

The proof of the theorem follows from the following two observations:
1. A =1Im (n) is the image of a Poisson structure and thus a generalized distribution.

2. The symplectic structure on A agrees with 7, i.e. for £&,n € A*, w™1(£,n) = (J&,n) = = (&,n).

12.2.3 Weinstein Splitting
Now, assume that the foliation is of locally constant rank near p € M.

Theorem 9 (Weinstein Splitting). For any p € (M, w) Poisson, there exist coordinates
(QIa <o qrsP1y -5 Pry Yl - 7?/[) s.1.

with ¢(0) = 0.
Note. e When £ = 0, this is the Darboux theorem.

e When the rank at p is locally constant, ¢ = 0 in a neighborhood of p. (Lie’s Theorem)

If the rank is locally constant, then J induces a complex structure J on (yi,- -+ ,y2x) which is integrable
since (wz, 7y) = 7(x,y). Moreover, it is independent of the {p;, ¢;}, as
[Jdpi, Jdy;] = J(d{pi,y;}) = 0 (60)

and similarly for g. This gives us a local coordinate system R2("=%) x CF,
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12.2.4 Examples of type jumping

Given a complex structure J; = ( -7 J* > and spaces

2 2 2
L=Ty ®Tre, \NL* = NTro® (Tho®T5,) & \ 15, (61)

we can examine deformations e € /\2 L* s.t. de+ %le,e] = 0.

Example. For ¢ € \? T,

2 3
1 _
</\T1,0®T5‘,1> @/\TI,O > de + 5[676] =0 = 0e=0,[c,e] =0 (62)

i.e. € is a holomorphic Poisson structure.

(1 i)<§>=1+e+e (63)

Letting P = € + €, we obtain a transformation J; — ePJe™F,

(D0 )T DG )G )7 2

(64)

By construction,

for @ = i(¢ — €). Thus, the type is given by n — rkQ.

Example. On CP2, A\? Tio=0(3), and € € H°(O(3)).

12.3 Spinorial Description

Recall that J determines as is determined by the +i-eigenbundle L. Set pi : L — T ® C to be the map
7(L)=FE CT®C. Since L = L(E,¢), kg, = (e°Q), i.e. kz, is generated by products ¢ = eZT«w0; A .. A0
when (0;,...,0;) = Ann E.

Note. However,

1. Let £ € T* bereal: then { =a+a € L L = J¢ =i(a+a) and -
m(a) + (@) =0 = 7(J§) = in(a — @) = 2in(a) = —2in(a). Therefore ENE = A ® C, with
Ann A = (QAQ), and k is the type of J.

2. f*w is nondegenerate on A, as S B
(,0) # 0 & (eBHwQ eB-wQ) £0 & (290, 0) £0 < " FAQAQ#0.

Problem. Show that w™! = 7|a.

Given coordinates (1, ..., Tn—k,D1s- -+ Pnks 21, .-, 2k) fOr Rf,(on_k) x C*, wy = w|a, J has a general spinor
¢ = eBT@dz; A --- Ndz, around each regular point. Here, we are fixing the splitting so that H = 0. Now,
dp=a-¢p=(X+¢&) ¢=d(B+iw) A ¢: by degree considerations, ixQ =0 and ix (B +iw) + £ =0, so
d¢ =0 and d(B + iw) A Q = 0, giving us co-integrability.
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Theorem 10. ¢ = eB'Fiwo Q) with B closed, i.e. J is equivalent to Ri(onfk) x Ck.

Proof. The general strategy is to transfer to some eZ+*Q and use the freedom available to make B closed.
Using the splitting on Ri(o"_k) x CF, we have a decomposition d = ds + 8 + 9. Set A = B + iw: then A
breaks up into a triangle

AQOO
Al 10 AlOl (65)
A02O AOll A002

which acts effectively via exponentiation on Q2°%. Note that, via averaging, we have
wo = wla = 5(A%% — A290). Our goal is to modify the triangle (A0, 4929 A1) 5o that A0, A%2 enter
only in the real part of A. To this end, let C°'! be any real form, and set

A/:A2OO+(A101 —I—W)—‘,—(AOOQ-FAOOQ)—FCOH

— (;(A200+A200)+A101 +A101 +A002+A002 +0011> + %(A200+A200) — B,Jriwo (66)
The condition that dA A Q = 0 gives four constraints on the A%*:
(a)d;A?° =0
DA 1+ g, A0 —

(0) ! (67)

(C)gAlOl + deOO20
(d)0A%% =0

The desire for B’ to be closed requires (dB')%'2? = (dB’)!!! = 0, which gives the following two constraints:

0A%% 1+ 9C =0
(68)
OAM 4 d;C + 9AOL =
We obtain the desired C' via the Dolbeault lemma. For the first constraint, note that (d)
= A%2 = 9a%!. Thus
(1) & 0C + 90a =0 < 9(C — da) = 0 < I(C — da — Ja) =0 (60)
& C —0a—0a=0yp < C=0a+0a+iddy
for x a real function. For the second constraint, note that (c) is true
& 0=0A101 +d;A%% = §(A"! —dra) = A =dsa+ 9B for B a 100-form. This implies that
(2) & d(dja+ 0B) + d(dsa + 9B) + ds(da + da + i00x) = 0 < dO(B — B) = id;d0x (70)
Moreover, (b) is true < A2 4+ d; A0 = 0 & d;03 = —0A?°. Thus,
dr09(B — B) = 09(A?%0 — A200) = (), so we can choose the desired . O

Corollary 6. A GCS on an exact Courant algebroid is locally equivalent, near a regular point, to
R k.
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12.3.1 More Examples of Type Jumping

Recall that we say type jumping via the operator ePHB] Jef(fBJrB). We can see this behavior more explicitly
using forms. Recall that a complex structure on C? a representation by a spinor ¢ = dz; A dzy. Let
B € HY(A>T) be a holomorphic section, e.g. 3 = 2191 A 83 (obviously holomorphic). Then

o= e'3+E<b =dz1 Ndzo + iy 0,08,d21 Ndza = 21 + dz1 A d2o (71)
At z; = 0, this gives the complex structure dz; A dze. Outside z; = 0, we have z1(1 + Biw,
where B + iw = dz%ld@.

d21+dZ2) ~ e
z1
12.3.2 Interpolation

Suppose (g, 1, J) is a Hyperk ahler structure, i.e. (I,g),(J,g) are K ahler and I.J = —JI. Then (K = 1J,g)
is another integrable K ahler structure, and one obtains a family of complex structures
{al +bJ + cK|a? + b? + ¢® = 1} parameterized by 52, all of which are K ahler w.r.t. g.

Remark. This places a strong constraint on g (reduction of holonomy, Ricci-flat metric, i.e. Einstein) but
does not imply that the Riemann curvature is 0. The only known compact examples known are

e K3 surface

o Flat T*

e Hilb"(K3)

e Hilb™(T*)

e Two examples in dimensions 12 and 20 (O’Grady).
Setting w;I = gJ,wg = gK, one obtains

wyl = gJI = —gIJ = I*gJ = [w, (72)

Moreover, considering the GCSs

I -1 -1
JI:< _J* )aJwJ:<wJ W )”UWK:(W}C G ) (73)

one obtains the relations

—Jw;?! —wF I
“]]IJUJJ = < _I*wJ d ) = < —LUJI 7 ) = _“]]LIJJJI (74)

Similarly, J1Ju, = —Ju,dr and J,, 0w, = —Jw,Jw,, whereas JiJ,, = J,,Jr. Thus,
(ad; + bluy + clw,)? = —(a? + b? + ¢?), giving a 2-sphere of GCSs interpolating I — w .

Problem. Show that the intermediate structures are all B-field transforms of symplectic forms.

Note. On (CPQ, for the complex case J;, K =Q", so K = ?(3) and ¢;(K) = —3. For J,, on the other
hand, K = (') and ¢1(K) = 0. So we see that we can never interpolate complex to symmetric. In fact,
for any even general complex structure,

ev 0 2 4
Ksc NTmoc= Ao Ae (75)

there is a canonical projection s : Kj — /\0 = C (i.e. s € C*°(Kj)) which vanishes when type jumps off of
zero. Hence, we see that for a generic GCS in four dimensions, the type change locus is PD to ¢;(K).
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Example. In dimension 4, one has types {0,1,2}, so an odd GCS corresponds to a four-manifold foliated
by 2-d symplectic leaves and transverse complex structure, e.g. 3, X %  or a symplectec surface bundle
over a complex Riemann surface.

Example. In dimension 6, one has types {0,1,2,3}, and one can construct an odd GCS by deforming the
complex structure by a holomorphic Poisson structure (here, the Poisson condition is nontrivial). 0-2
structures?

Problem. Construct an interesting even GCS on a compact 6-manifold.

We now consider examples on Hyperk ahler manifolds. Recall that, for a K ahler manifold one has maps

r— 7
N

s.t. J,w are integrable, ¢ = —wJ, and g* = g & J*w = —wJ. Thus,

() )L
()N )

is a generalized Riemannian metric. The integrability condition can be rephrased as VI = 0 or Vw = 0. As
above, for a Hyperk ahler manifold, we have almost complex structures (I, J, K') which are K ahler w.r.t. g
and satisfy quaternion relations, thereby giving us a 2-sphere of complex structures {al + bJ + ¢K}. This
gives us an integrable complex structure which is K ahler w.r.t. g for {(a,b,c) € S%}.

Now, the relations VI = 0,VJ = 0, VK = 0 reduce the holonomy of our manifold: the first reduces it
U(n), while the second reduces it to the quaternionic unitary group U(n); NU(n); = Sp(n). This is
modeled as follows: set (V,I) to be a complex vector space, with dual V* and anti-complex space V =g
with action i - x = —ix. Then, in the category of vector spaces with C-linear maps, one has a diagram

(77)

V———V
N

with @ a complex symplectic form and h = g + ig(J-, ) the induced hermitian metric. Note that J is
”anti-linear”, in the sense that Ji = —iJ = JI —ilJ. One thus finds that the holonomy reduction forces
the Ricci flow to be trivial, though the whole Riemann tensor need not vanish.

Finally, recall that the only known compact examples are the K3 and T* surfaces, the Hilbert schemes of
both, and the two examples of O’Grady in dimensions 12 and 20. Except for the 7% and Hilb™(T*), the
metrics on these manifolds are not explicit, as they rely on Yau’s existence theorem of Ricci flat metrics on
K ahler manifolds with holomorphic trivial canonical bundle (Q A --- A Q # 0).

12.3.3 Intermediate Types
As earlier, given a Hyperk ahler structure (g, I, J, K = IJ) and setting w; = gI,w; = gJ,wx = gK, we have

an S2-parameterized family of structures aJ; + bl,, + clu . Moreover, observe that JrJ.,, = —J.,Jr, so
_ o —al —bw;!
J=alr +bl,, = ( hoy ol > (79)
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is generalized almost-complex for a? + b = 1. It has Poisson structure —bw;l = —w™!, 50 J could be a

B-field transform
1 —w! 1 o wTlB —w! (80)
B 1 w -B 1) \ w+Bw'B —Bw!

of Jz,,,. This holds if bw; ' B = —al, i.e. B= —fw,I = fwk.

Problem. Check that

1—a?

ij = bUJJ (81)

1 n (a)2 b 1
—w —) bwgw; wg =
b7 b KWj WK
Thus, we find that J = e%‘”k.,]]%w‘,e_%“K is integrable.

In another direction, a small deformation of J; by a holomorphic Poisson structure is a B-symplectic

structure, e.g. take 8 = (wy +iwx) 1,08 =0,[5,5] = 0.

Problem. Show that w; + iwk is a holomorphic, nondegenerate (2,0)-form and therefore
B3 = (wy +iwg)~! is a holomorphic, Poisson, nowhere-vanishing bivector field. Thus, the S-transform is of
symplectic type: determine it explicitly.

12.3.4 Generalized K ahler Geometry

Starting with (I,w;y) in a Hyperk ahler manifold, one can do an infinitesimal deformation by a bivector
tw;l (the real part of the holomorphic Poisson structure (wy + iwg)~%). (...)
Thus, the generalized K ahler structure (J4,Jp) induces a Z x Z-grading on complex differetial forms

S ®C= o, Ur
p+qg=n mod 2 (82)
p+g<n
and that
dy =064 +0_+06_ 404 (83)

maps UP? to YrThatt gyrtlatl gyrtla-l gyr-hatl gyr=14-1 Since Ay, = 1As, (—), we obtain the
Hodge decomposition

Hy(M,C) = P Hr (84)
Now, recall that the key observation leading to the K ahler identities was *|yp.« = 1774

Example. Define the twisted Betti numbers to be the values be*/°? = dim H¢'/°*(M), where, if [H] = 0,
b =" b2k pod = Dok b?*+1. Consider the four-dimensional case as given before: then, if the generalized
K ahler form is of type (ev, ev), one finds that b°? must be even as well, since the action of complex
conjugation is reflected through U°°. Opposingly, if the generalized K ahler form is of type (od, od), b¢”
must be even. In particular, this implies that on CP2, there are no (od, od) generalized K ahler structures
(since b =1+1+1=3).

Now, recall that * = (i)PT¢ satisfies the identity a(a(x)¢) = x¢: in four dimensions, this implies that

a(x) = (=1)*3/2x = x and a(¢) = ¢ is degrees 0,1,4, —¢ in degrees 2,3. Applying this to the (ev, ev) case,
we find that 4% = (Q° + Q%) + Q2 , while =20 + ¢%2 + Y0 + ¢%~2 = (Q° + Q*)_ + Q2. Opposingly,
in the (od, od) case, we find that U%° = (Q13)_, while /"1 Ut~ =02 + (Q° + Q%) and

UM eyt =02 +(Q04+ Q).

Finally, if [H] = 0, * induces a splitting on H? = b2 + b2. Thus, in the (ev, ev) case, bf_ is odd and b; = b3
is even, while in the (od, od) case, both b2 are odd, and just b; is necessarily even. In particular, for the
space CP2#CP?#CP2#CP2, one has twisted Betti numbers 1,0,4,0, 1.
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12.4 Introduction to Hermitian Geometry

Let G = —JaJp: decomposing E = C; @ C_ into +-definite spaces, ones finds that C1 = Ker (G F 1), i.e.

Py = % are the projection operators to C, so that PZ = Py. Recall that, given X € T, one has a

unique pair of lifts X* to C.. We previously obtained C+ = Gr(b = g) in an isotropic splitting, so
g(X,Y):<X+,Y+>:<X7,Y7> (85)

independent of the isotropy choice. Now, since G commutes with J4 and Jp, the C1 are complex
sub-bundles, with J4 = Jp on Cy and J4 = —Jp on C_. Via the isomorphism 7 : Cyx — T, any structure
on C'y can be transported to 7. In particular, the complex structure on C'y gives two almost complex
structures J4, JJ_ on T, both of which are g-orthogonal (since J4 preserves () on Cy). That is, we obtain
almost-Hermitian structures (g,Jy), (g, J-) on T.

Proposition 7. Choose the unique splitting for E where b=0, i.e. E= (GT*)®T* =T ®T*. Then
(Ja,dB) can be reconstructed from (g, J+,J_) as follows:

o JyisJr onCy, J_ on C_
o JpisJ_onCy, JL onC_
That is,

Ja/p = 7T|E¢J+7TP+ + |5t J_mP-

:;<;>J+(1 0)(; gll)i;<_lg>=f(1 0)<_19 _91_1) (86)
() mmye (1)) (0 )

Setting wy = gJ+, w;l = —Jig~ !, one obtains

YT Jo Wl
Tass =35 (( wy —Jf + —w_  —=J*

2
1 1 1 (87)
I A A T I E
2\ wyFwo  —JyFJ
12.4.1 Condition on Types
The above expression implies that m4,p = wll Fw=! are real Poisson structures and wjrl = —J,;g" !, with
types
1.
type(Ja) = idlm r(Ker mq = Ker (J4 — J_))
2 (89)
type(Jp) = idim r(Ker mp = Ker (Jy + J_))
Note that
(T I-) = (T + T )T = J2) (89)
Thus,

1. (Jy — J-), (J+ + J-) have linearly independent kernels.
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2. x = Ker (J; —J_) @ Ker (J4 +J_) C Ker [Jy, J_]
3. If [J, J_]x =0, then

. r+JiJ n r—JiJ_x (90)
2 2
and (Jy + J_)(z + JyJ_x) = 0. Thus, Ker (J; + J_) ® Ker (J; — J_) = Ker [J4, J_], and
type(Ja) + type(Jp) = 2dim gKer [J;, J_].

Corollary 7. type(A) + type(B) < n on M*".

It immediatly follows from this that, since type(A4) + type(B) = n everywhere < [J, J_] = 0, then the
pair (type(A),type(B)) is constant on a connected manifold.

12.4.2 Integrability

As above, we have a map with structure actions J4 O Cy — T O J4 from our decomposed bundle to T'.
Note that the complexifications of these bundles are given by

C,®C=L,9L,,C_C=L_9L_ (91)
,where Ly = LaNLp,L_ = LsNLg. Now, La, Lp are integrable = L. are Courant integrable
— (L) = T are Lie integrable = .J. are integrable = (.Jx, g) are both Hermitian. With the
chosen splitting, we have
Li={X+gX: XeT}"} ={X —iwy X : X € T}"} (92)
L, is closed under H-Courant <
VX, Y € T ixiy(H —idw;) =0 (93)
Similarly,
Lo ={X-gX:XeT")} ={X+iw_X:X cT""} (94)
and L_ is closed under H-Courant <
VX,V € T ixiy (H 4 idw_) =0 (95)

We can rewrite this as
ix’iy(H F idw:t) =0
ixiy (H Fi(00)wx) = 0(since i xiyOws = 0)

o (96)
ixiy(H+diws) =0
H+tdiwy =0
That is, for a generalized K ahler manifold, we must have H = dSw, = —d°w_ in order that Jy is

integrable.

Theorem 11. An abstracted defined Ja g on T'® T*, H defines a generalized K aher structure
& H =dlw; = —d°w_. That is, a generalized K ahler structure over a b-field is a triple (g, Jy,J_) s.t.
dSwy = —d°w_.
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13 Lecture 18 (Notes: K. Venkatram)

13.1 Generalized K ahler Geometry

Let (Ja,J5) be a generalized K ahler structure: then G = —J4Jp is a generalized metric, and taking the
decomposition T @ T* = C & C_,Cy =Ty, gives Ja|c, = IBlc,,Jalc. = =IB|c_. Thus, we obtain two
complex structures J,,J_ on T by transport, i.e. J, X = 7J4 X+ and J_X = 7J4X~. Since J4 is
compatible with G, this implies that (J4, g),(J_,g) are almost Hermitian. Further, given the splitting of
the Courant algebroid, J4,Jp can be reconstructed from (g, Jy, J_) by

Ja=Jgle, +J-|c_

(97)
I =Jile, —J-|c_
thus giving the formula
LJp+d. —(wi'Fwl)
_ - 98
Jass 2<w+¥w —(Jr £ J*) (98)
13.1.1 Integrability
As shown earlier, the integrability of (J4,J5) is equivalent to the Courant involutivity of L4, L.
Specifically, note that
(TOT)RC=La®La=Lpg®Lg=(LanNLp)®(LanLp)®(LanLp)®(LanLp) (99)

=L,oL_®L_®L,

Thus, the complex structures on C, and thus on T, are described by the decompositions
C,®C=L,®Ly,C_®C=L_@L_, and the dimensions of the four spaces on the rhs are the same.
Finally, since Ti‘o = +i for J; = Ly (and similarly, T} ; = L_), we have integrability < L, Lp are
involutive = L is involutive. The latter impliciation is in fact an iff:

Proposition 8. L. involutive => L, ® L_,L, ® L_ involutive.

Proof. Using the fact that
<[a7b]7c> d) = [[[dH?a]ab]aC] ' ¢ =a- deH¢ (100)

for any ¢ pure, a,b,c € Ly, we find that ([a,b], c) defined a tensor in \ L}. Let a € L;,b € L_ be elements.
Then, for any z € Ly, {[a,b],z) = ([z,a],b) = 0. Similarly, for any € L_, ([a,b],z) = ([b,z],a) = 0. Thus,
[a,b € Ly & L_. O

However, as we saw last time,
Ly ={X+gX|X eT}"} = {X Tiwe X|X € TL"} (101)

and so L4 are integrable < Ti’o are integrable and ixiy (H Fidwy) = VXY € Ti’o. Using the
integrability of J., we can write the latter expression as ixiy (H Fi(0+ + 0+ )wy) = OVX,Y € Tjt’o. Since
O+wy is of type 1,2, it is killed, and

diwy+dw_ =0

dSwy = —H (102)

ixIy(Htdiwy) =0 H+tdiwr =0& {
Finally, we obtain the following result.
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Theorem 12. Generalized K ahler structures on the exact Courant algebroid E — M, modulo non-closed
B-field transforms (choice of splitting) are equivalent to bi-Hermitian structures (g, Jy, J_) s.t.
diwy +d w_ =0,ddSwy =0, and [dSw,]| = [E] € H*(M,R).

Remark. This geometry was first described by Gates, Hull, Rocek as the most general geomtry on the
target of a 2-dimensional sigma model constrained to have N = (2,2) supersymmetry. Note that the
special identities giving a (p, ¢) decomposition of Hj; (M, C) are a consequence of the special identities
required by SUSY. However, they are only clear when viewed in terms of (J4,Jp) rather than Ji.

We can use this theorem to construct several new examples of generalized K ahler and generalized complex
structures.

Example. Let G be an even-dimensional, compact, semisimple group, and choose an even-dimensional
Cartan subalgebra hh C g ® C. The root system splits into +re roots, giving a decomposition g C=7&7
which is closed onder the Lie bracket. Thus, by left or right translating, we get an integrable complex
structure on GG, and since the root spaces are killing-orthogonal, we have a bi-Hermitian structure

(9,JL, Jr), with g the killing form. Now, recall the Cartan 3-form H(X,Y, Z) = ¢([X,Y], Z) and notice
that

A

diwL(X,Y,Z) = de(JLX, JLY, JLZ) = —wL([JLX, JLY],JLZ) +C.p.
—g(JL I X, Y]+ JL[X, JLY] + [X, Y], Z) + cp. (103)
(29([JL X, JLY], Z) + c.p.) — 3H(X,Y, Z) = —2A — 3H

Thus, dSwy, = —H; since the right Lie algebra is anti-isomorphic to the left, dywr = H, and (G, g, Jr, Jr)
is a generalized K ahler structure unique w.r.t. H.gtqn- Finally, we obtain the generalized complex
structures

_( JoEJr —(wp Fwgp)

on G.
What are their types? Since wyp = gJr,wr = gJR,

—(wp' Fwrp) = (L FJr)g™" (105)
Jp 4 Jg = Ryu(Rg-1,Lged + JRy—1,Lyu)Ly1,

Thus, the rank of (J4,Jp) at g is simply (rk[J, Ad 4], rk{J, Ad 4}).

Problem. Describe the symplectic leaves of (Ja,Jp) for G = SU(3).

In the simplest case, Q = [J;,J_]g~! = 0, so that type A+ type B =n == constant types. As earlier,
since [J4,J_] = 0, we have a decomposition T® C =A@ B® A& B, with A=T, N1y, B=T{ NT;;.
Note that A, B are integrable since Tffo, 17, are. Also, note that

Ao A=Ker (Jy —J_)=Im (J; + J_) = Im 74 is integrable, as is B ® B.

Proposition 9. A, B are holomorphic subbundles of Tfo.
Proof. Define 0x01 20 = [X, Z]"0. For Z € C*(A),X = X7+ X5, [X, Z]"0 = [X, Z]* + [X, Z]P, with

the latter term being zero since [X, Z] is still in A & A and [Xg, Z] is in the integrable space A & B.
Thus, A (and similarly B) give J1 holomorphic splittings of T'M. O
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14 Lecture 19 (Notes: K. Venkatram)
14.1 Generalized K ahler Geometry

e
Recall from earlier that a K ahler structure is a pair J; = ( 7 g ) JJw = ( w W ) s.t.
g1
J.]Ju}:nﬂw«ﬂ.]:_< g ) = -G.

Definition 22. A generalized K ahler structure is a pair (Ja,Jp) of generalized complex structures s.t.
—Jalp = G is a generalized Riemannian metric.

The usual example has type (0,n) for Ja,Jp. In fact, as we will show later type Ja + type Jp <n and =n
mod 2.

Example. 1. Can certainly apply B-field (e2J e, eBJge™) and obtain the generalized metric
Br,—B
e”Ge ",

2. Going back to hyperk ahler structures, recall that

(wy +iwg)] = g(J +iK)I = —gI(J +iK) = I*(wy + iwk) (106)

1 1

$0 +(wy +iwg) = o is a holomorphic (2,0)-form with o™ # 0. Note that 8 = 3 (w}
Bo = (1 —il) = Py, i.e. it is the projection to the (1,0)-form f3

1 fofioag
— iw,, ) satisfies

[ V)

Try = O'il‘Tl,o.

Recall that, for 8 a holomorphic (2, 0)-bivector field s.t. [5, 5] =0, ePHB] PP is a generalized complex
structure. Thus, we have

1 twy? I 1=ty \ _ (T —tw; I 1 —tw;' Y\ (T —tlw;' —tw; ' T
1 ~I* 1 - I 1 —\o0 —I*
(T 2tKgT' Y\ [T —2twit
- - ) ~I*

(107)
Now, note that
1 tw;! —wi! 1 —tw;'\ [ twilwr —wi! 1 —tw;!
1 wr 1 o wr 1

. ( tw}lwf —w;l —thjlwijl >

wr 7&4)]&);1 (108)
_(tK (—1+ Pt
- wr —tK*
_ _27
=+v1-t2] 1,t2w1+tJK

2 -1
tK (—1+t%)w; s a
wr —tK*

-1
By a previous calculation, this is integrable, and J4 = ( I %twK ) ,JB = (
generalized K ahler structure of type (0,0).

Problem. Let (J,w) be a K ahler structure, 3 a holomorphic Poisson structure. For Q = 3 + 3, when is
e'?] e~ integrable for small ¢?

49



What is the analog of the Hodge decomposition H*(M,C) = D, =i HP(M) for generalized K ahler
manifolds. The key element of this decomposition in the case of ordinary K ahler structures is to show that
Ay = 0Ap = 0Ay, where Ay = dd* + d*d = (d + d*)?, and d* is the adjoint of d in an appropriate metric
define on forms. The equality of the above decomposition then follows from Hodge theory (that every
cohomology class has a unique harmonic representative).

14.2 Hodge Theory on Generalized K ahler Manifolds

Recall the Born-Infeld volume: letting (a;) be an orthonormal basis for C in Pin(T' @ T™), we have an
associated element —G € O(n,n); letting x) = a(a(*)y) denote the generalized Hodge star and
(%¢, 1) € det T* the symmetric volume form, the Born-Infeld inner product on S ® C = Q*(M,C) is

(6,9) = /M<*¢>, ) (109)

-1
This is a Hermitian inner product. Recall also that, if we split T'@® T* and G = g g ), then
(x¢, 1) = & A %) = (¢, 9)vol, via the usual Hodge inner product. What is the adjoint of dy?

Lemma 7. (d¢, ) = (—1)3m Mg 9y).
Proof. First, note that a(¢®) = (=1)2**-D¢F)  then
d(¢ A a(y)) = do A a() + (=1)"¢ A da(y)
d(a(yP)) = (_1)%p(p71)d¢p — (_1)%p(p71)+%p(p+1)a(d¢p) = —a(dyP)

Thus, d(¢ A a(y)) = {dp, ) + (—=1)"(¢, dip). 0
Lemma 8. We have the same for H A -.

(110)

Corollary 8. On an even-dimensional manifold, [, (du¢,¢) = [, (o, du).

Now
h(dsd, ) = / (v, ) = / (A, o (ast)s) = / (6 digo (x)) = / (kg xdyo(xe)  (111)

so di; = *dg*~1. As in the classical case, dy + d}; is elliptic, as is D? = Ag,,. By Hodge theory, every
twisted deRham cohomology class has a unique harmonic representative.

To perform Hodge decomposition on generalized K ahler manifolds, note that we have two commuting
actions on spinors. For J4, we have the maps 04 : Uy — Uk11 and D4 : Uy, — Uy_1, with the associated
differential dgy = 04 + 04. Each U), must decompose as eigenspaces for Jg, i.e. we can obtain a set of
spaces U, s which has the pair of eigenvalues (ir,is) for (Ja,Jp). Between these spaces, we have horizontal

maps given by L4, L4 and vertical maps given by Lpg, Lp, with the associated decompositions

(ToT)YRC=LaNLp®LaNLg®NLaNLp®LaNLp

= (112)
Ay =6, +0_+0, +6_

Proposition 10. % = —64 and §* =45_.
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Proof. The identity J4Jp = —G corresponds to the spin decomposition ez94 x e298 = x. Thus, for
¢ EUPY, xp = e3TA x e3IBp = PT9p and

8 = (rdp + 1 ¢) = (IPTI20,07P ) =~ (113)
The other identity follows similarly. O

Corollary 9. If ¢ € UP? is closed (i.e. dg¢ =0) then it is A closed as well.

By our above decomposition of dy and the implied decomposition of d};, we find that
%(dH +dj;) =06- +d* and %(dH —dj;) = 04 + 07, so that %AdH = As_ = As, . This finally gives us our
desired decomposition

Hy(M,C) = b MRS (114)

[p+g|<n,p+g=n mod 2

15 Lecture 20 (Notes: K. Venkatram)

15.1 Generalized Complex Branes (of rank 1)

In complex geometry, we have special submanifolds, i.e. complex submanifolds ¢ : S — M s.t.
J(TS)C TS, ie. TS C TM is a complex subspace (for examplex, points in a manifold, or algebraic
subvarieties). In symplectic geometry, there are several kinds of special submanifolds: isotropic

(TS Cc TSY), coisotropic (T'S¥ C T'S), and Lagrangian (T'S = T'S¥ < ¢*w = 0).

Example. L If f: (M,w) — (M,w) is a diffeomorphism with f*w = w (i.e. a symplectomorphism),
then ¢ : Ty — M x M satisfies ¢*(mfw — mjw) = 0, i.e. 'y is Lagrangian.

2. For any manfold M, T*M is symplectic, with w = > dp; A dz;, for {x;} a coordinate chart on M and
{p;} coordinates for the 1-form. Then the fibers (z; = 0) are Lagrangian, as are the zero sections
(p; = 0). Aimilarly, the graph of any 1-form a = 3 a;da? € Q(M) is Lagrangian
& ffw=>Ydo; Ndz' =0 da = 0.

Lagrangians and complex submanifolds are important in physics since they are the D-branes in A- and
B-models. However, for a generalized complex manifold, we don’t yet have such a good notion of subobject.
Now, associated to any submanifold S — M, we can form

0—-T5—=TM — NS —0 (115)
and hence
0—->N*S—>T"M—->T"S—0 (116)

where N*S = {& € T*M|{(T'S) = 0} is the conormal bundle. Therefore, we have a natural maximal
isotropic subbundle TS @ N*S C TM @ T*M. If there is ambient flux, i.e. (M, H), then as we defined
before, (f : S — M, F € Q2(S)) gives us a topological brane when f*H = dF. In this case, we similarly
have 7 p = fu.I'r CTM ©T*M s.t.

[Qp={fav+cTSeT " Mv+ f*¢eclr} (117)
This gives us an exact sequence
0—-N'S—r15p—TS—0 (118)

, and we call it a generalized complex brane when J7s p C 75 .
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15.1.1 General Properties of Generalized Complex Branes
o (f:S— (M,H),F € Q*S)) has generalized pullback map ef' f* : Q*(M) 3 p — ef" f*p € Q*(S) s.t.
def' f*p=dF nef f*p+ el frdp=ef f*(dp+ H A p) = e f*dyp (119)
Thus, we obtain a map on cohomology Hj; (M,R) — Hj;(S,R).
e Let ¢ be the pure spinor line in A" 7*M|g defining 7375 Then ¢ = (e~F'det (N*)) and Jr C 7
implies that
0=Jz)p=T,2]-v=I(x-¥)+z-J-YVorer (120)
Thus, Ji = (ik): since v is real, k = 0, and ¢ € U°.
e Gerbe interpretation: for G = (L;j, m;j, ;1) a gerbe, (V;;, B;) a connection, if we can find (L;, V;)
on S s.t. F(V;)— F(V;) = F(Vj), then F(V;) — B; = F is the gloabl 2-form on S we described.
e Action by B-fields: e O T & T*,(S,F + B).
Example. Examples of generalized complex branes:
1. Complex Case: f: (S, F) — (M,J)(H =0). Then
TS, F = {’U + &€ TS@T*M|Z\/F = f*g}
Jrs,p=1sp < J(ITS)CTS and — J"Fv = FJv < S is a complex submanifold and F" has type (1,1)
(121)
Thus, we interpret F' = F(V) as the curvature of a unitary connection on a holomorphic line bundle
L, giving us the complex brane (S, L, V).
2. Symplectic Case: For H = 0, F' = 0, we have

—wt TS TS « _ N w w
J’-(w ><N*S>—<N*S>®w(TS)—N Sand w ' (N*S) =TS < TS C TS and TS* C TS
(122)

i.e. iff S is Lagrangian. For F' # 0, things are more interesting. Choose locally an extension of F' to
Q2(M). Then J,, fixes 75 p < ef'J, et fixed 750 &

—wTlF —w! TS TS
( w+ Fw lF Ful > ( N*S ) - ( N*S ) (123)

e W IN*S CTS,ie. S is coisotropic

o F(TS¥) C N*S,ie. F vanishes on the characteristic foliation C, i.e. locally
F=n{,m:8—5/C.

e WwIFOTS st (w+ Fw'F)TS C N*S),ie. on TS/TS*,(1+w 'Fw™lF) =0, ie.
(w™lF)? = —1. Thus, T'S/TS% inherits a complex structure.

That is, we must have

Note that F + iw defines a form of type (2,0) on T'S/T'S¥ w.r.t. I = w™'F since
I*(F +iw) = Fo ' (F 4 iw) = —w +iF = i(F 4+ iw) = (F +iw)I (124)

and F' + iw is closed. Thus, F' + iw defines a holomorphic symplectic structure on SC, which therefore
must be 4k-dimensional. This is precisely the geometry discovered by Kapustin and Orlov as the
most general rank 1 A-brane in a symplectic manifold.
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Example. Let (g,I,J) be a hyper-K ahler manifold, and consider the complex structure wy.

Example. If S = M, then the conditions are (w™'F)? = —1, i.e. F + iw is a holomorphic symplectic
structure. For example, (M, g, I, J) hyperk ahler with w = wy,, F = wy,w™'F = w; 'wy = (¢J) " 'gk = —I.
This is an example of a space-filling rank 1 A-brane used by Kapustin-Witten in their study of the
geometric Langlands program.

15.1.2 Branes for Other Generalized Complex Manifolds

. Lo - 1 .
Consider a complex structure I, deformed by a holomorphic bivector 8: Q@ =8+ 3, J = ( 7Q > isa
generalized complex strucutre, e.g. CP2.
0-Branes: Before deformation, all the points were branes. Now, only the points on 8 = 0 are.

2-Branes: Branes must be complex curves where 3 = 0 or (5 + iw)-Langrangian where 8 # 0. That is, 8 =0 is
a brane, as is any curve on which 8 + iw = 37! vanishes. In particular, any previous complex curve is
still a brane.

Problem. Are there 2-branes in (CPﬁ2 which are not complex curves in CP?? What are the space-filling
branes on CP3?

16 Lecture 21-23 (Notes: K. Venkatram)

16.1 Linear Algebra

We define a category H whose objects are pairs (E, g) (sometimes denoted E for brevity), where E is a
finite dimensional vector space /R and g is a nondegenerate symmetric bilinear form on E with signature 0,
and whose morphisms are maximal isotropies L C E x F. Here, E +— E = (E, —g) is the natural
involution, and E x F' = (E x F,gg + gr) is the natural product structure. Composition is done by
composition of relations, i.e. E =L F =M G Mo L ={(e,g) € E x G|3f € Fs.t.(e,f) € L,(f,g9) € M}.

Proposition 11. M o L is a morphism in H.

Proof. L:Lx M CE x F x F x G =W is maximally isotropic. C = E x Ar x G, where
Ap ={(f,f)|f € F}, is coisotropic, i.e. C* = Ap C C. Thus, we get an induced bilinear form on
Ct/C=FE xG. CN L+ Ct is maximaly isotropic in W, so

Ccnc+chHt=ct+Lh)ync=ct+£Lnc (125)
Thus, CNL+C+/Ct =MoL CC/C+ =F x G is maximally isotropic. O

Remark. This cateogory is the symmetric version of the Weinstein’s symplectic category ¢ where
Ob({) = (E,w) and morphisms are given by Lagrangians. Thus, is the the odd” version or parity reversal
of C.

A particular case of a morphism E — F' is the graph of an orthogonal morphism.

Problem. Show that L : E — F is epi & (L) = F, mono < ng(L) = E, and iso < L is orthogonal iso
E— F.

So for dim E = 2n,0(n,n) C Hom(E, E) are isos. But Hom(F, E) = O(2n) as a space since we can choose
a positive definite Cy and then any L € O(2n). This implies that Hom(FE, E) is a monoid compactifying
the group O(E).
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16.1.1 Doubling Functor

Now, there is a nature ”Double” functor D : Vect — H which maps V — V @& V* and
{f: VoM {Df={(v+Fnfivt+tn) eVaV xWaeWveV,neW}} Note that
Df c DV x DW and dim Df = dim V + dim W.

([, feo+n), (v + [, foo + 1)) = =f"n(v) + n(fev) =0 (126)
Problem. Prove that D is a functor, i.e. D(f og) = Df o Dg.
Note that H has a duality functor L € Hom(E, F) = L* € Hom(F, E), where L* = {(f,e)|(e, f) € L}.
Problem. Show that D(f*) = (Df)*.

Problem. Prove that D preserves epis and monos.

16.1.2 Maps Induced by Morphisms

A morphism L € Hom(E, F') induces maps L o — : Hom(X, F) 2 Hom(X, F)) : L* o —. A special case is

X = {0}, in which Hom(0, F) = Dir(E), so L € Hom(FE, F') induces maps L, : Dir(E) & Dir(F) : L*. If L
is mono or epi, so is L,. This recovers the pushforward and pullback of Dirac structures: for f: V — W a
linear map, Df : DV — DW a morphism we obtain maps Df, : Dir(V) & Dir(W) : Df*. As observed
carlier, any Dirac L C V & V* with my (L) = M C V can be written as L(M, B), B € N> M*,ie. L =j,Ip
for j : M < V the embedding and a unique B. That is, L = j,eZM.

Example. Given f:V — W a linear map, Df C DV x DW =D(V & W*). and
Df = ((v, f*n), (fxv,n) - -+ ), hence Ty gw-Df = V & W* is onto. Therefore, Df = eZ(V @ W*), and in fact
B=feV*eWc AN (VaeWw:

16.1.3 Factorization of Morphisms L : DV — D(W)

Let L € Hom(DV,DW),L C DV x DW =2 D(V @ W). Then L = j.e!' M, for M = nygwL CV & W. Let
¢: M — V. : M — W be the natural projections.

Theorem 13. L = D1, o el o Dp*.
Proof. (Exercise) O

Corollary 10. L is an isomorphism < ¢, are surjective and F determines a nondegenerate pairing
Ker ¢ x Ker v — R.

Therefore, an orthogonal map V& V* — W @ W* can be viewed as a subspace M C V x W, F € /\2 M*.

16.2 T-duality

The basic idea of T-duality is as follows: let S' — P —™ B be a principal S! bundle, i.e. a spacetime with
geometry, with an invariant 3-form flux H € ijl(P)S1 and an integral [H] € H3(P,Z), i.e. coming from a
gerbe with connection. Then we are going to produce a new ”dual” spacetime with ”isomorphic quantized
field theory” (in this case, a sigma model). Specifically, let P be a new S'-bundle over B so that

c1(P) =7.(H) € H*(B,Z), and choose H € H3(P, Z) s.t. #,H = ¢;(P). More specifically, choose a
connection § € QY(P) (i.e. Ly,0 = 0,ip, = 1/27) so df = F € Q?(B) is integral and [F] = ¢;(P). Then

H = F A6+ h for some F € Q?(B) integral and H € Q*(B). Now, [F] € H?(B,Z) defines a new principal
S -bundle P. Choose a connection 8 on P so that df = F. Then define H = F A0+ h, so tat Ik H =F and
[H=F.
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Example. Let S! x §? — 52 be the trivial S'-bundle, with H = v; Avy. Then vy = fsl =1 (8% — §?),
so the T-dual is the pair S3,0. Our original space has trivial topology and nontrivial flux, while the new
space has nontrivial topology and trivial flux.

Remark. In physics, T-dual spaces have the same quantum physics, hence the same D-branes and twisted
K-theory.

Theorem 14 (BHM). We have an isomorphism Kj;(P) & K;IH(I{’).

Next, let P xp P = {(p,p)|m(p) = 7(P)} C P x P be the correspondence space, ¢, the two projections.
Then ¢"H — ¢ H = F A0 — F A G = —d(6*0 A 6).

Definition 23. A T-duality between S'-bundles (P, H) and (P, H) over B is a 2-form
FeO?(Pxp P)Slxs1 s.t. *H —¢*H = dF and F deterines a nondegenerate pairing
Ker ¢, x Ker ¥, — R.

In fact, T-duality can be expressed, therefore, as an orthogonal isomorphism
(T, & T}, H)/S* —EP*PP) (T, 6 T, f7)/5" (127)

though of as bundles over B (or just S Linvariant sections on P, P). This map sends H-twisted bracket to
H-twisted bracket, via

Q*(P)S' 3 prs 1(p) = e Agp*p = /S eF Np*p e (D) (128)

Since d(e*'p) = ¥ (dp + (H — H)p), we find that dj (¥ p) = eFdyp and 7(dgp) = d57(p) as desired.
Overall, a T-duality F : (P,H) — (P, H) 1mphes an isomorphism

(T, ®Ty; H)/S! —L(PxsP.F) (T4 g T, H)/S" as Courant algebroid, and thus any S'-invariant
generalized structure may be transported from (P, H) to (P, H).

Example. 1. Tj C (T, ® T,;, H) is a Dirac structure = T-dual is
T(E+0)=E6—0p=T"B+(9;) = A® Ann A (129)
for § = (0y)
2. The induced map on twisted cohomology Hj;(P) & H;'l(ﬁ) is an isomorphism.

3. Where does 7 take the subspace Cy =T'gyy, CT*®T? In TP =TB @ 1, decompose
g=9god ©0+ g1 ©0+ go,b=0b; ANO+ by for g;,b; basic. Then

Cy =Tygpp = (x+ fOs + (ixg2 + fg1 +izb2 — fb1) + (91(z) + fgo + b1(2))0) (130)
which is mapped via 7 to
Dyyp = (@ + (91(2) + fgo + b1(2))05 + (izg1 + fgr + by — fb1) + f6) (131)
where

§=000-200 Ly ob -
{g © © +92+90(1® 1—910g1) (132)

— 91 A 0 + b + 91/\b1
These are called ”"Buscher rules”.

4. Elliptic Curves:
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