12 Lecture 12-17(Notes: K. Venkatram)

12.1 Generalized Complex Structures and Topological Obstructions

Let E = (T®T*, H) be an exact Courant algebroid.

Definition 19. A generalized complex structure (GCS) on E is an integrable orthogonal complex structure
J:E — E, ie amap s.t.

e (JA,JB) = (A, B)
o L =Ker (J —il)

Note. 1. (JA,B) = (J?A,JB) = —(A,JB), and thus (J-,-) is a symplectic struction on E compatible
with (,).

2. L is maximal isotropic and so is L, and thus F = L & L = L @ L* and we get a Lie bialgebroid.

3. V must be even dimensional: letting x € V @ V* be a null vector then (Jz,z) = 0 and (Jz,Jz) =0,
so we can always enlarge a null set by 2 vectors; thus the maximal null set is even.

At the level of structure groups, (T'® T*, (,}),J corresponds to
O(2n,2n) — U(n,n) = O(2n,2n) N GL(2n,C).

Problem. Show that O(V @ V*) acts transitively by conjugation on a set of GCS

0O(2n,2n)

= )

Example. 1. J= ( d g ) actingon V @ V*.

—w !
2. J:(w ) acting on V @ V*.

3. Any conjugation AJA™!, A € O(2n,2n), e.g. eJe !,

(5 ) )0 =0 ) (s 5 )= (st )
)= =G 5=

(31)

33



Lemma 3. O(n.n) ~ O(n) x O(n).

Proof. Let Cy C V @ V* be positive definite and C_ = Ci-. THen O(n,n) acts transitively on the space of

all C, with stabilizer Stab(C4.) = O(n) x O(n). Question: what is %? C', (see diagram below) is

given by A : R® — R",||Az|| < ||z||Vz, i.e. ||A]|op < 1. Thus, it is the unit ball under the operator
norm. O

Lemma 4. U(n,n) ~U(n) x U(n)

Proof. We can enlarge C. to C. by adding V L Cy and JV, and get complex decomposition
E=Cy&Cf=Cy+C_. U(n,n) acts transitively on these spaces with stabilizer
Stab(Cy) = U(n) x U(n). As above, we obtain the unit ball in C™. O

Thus, the existence of J is topologically equivalent to the reduction to U(n) x U(n), i.e. complex structures
Ji :=1J|c, on Cy and C_ = C7 (since the bundle of positive-definite subspaces is contractible).

Note. The projection 7 : C1 — T is an isomorphism, so we obtain almost complex structure Jy : T — T.

Thus M must be almost complex, and J has two sets of Chern classes C?E € H*(M,Z) associated to Jy
(ie. ¢ =¢i(cx)) and (T & T*,J) = ¢(Cy) Ue(C).

Remark. Topologically, E has structure group U(n,n) ~ U(n) x U(n), so the bundle is classified by
Y : X — B(U(n) x U(n)) = BU(n) x BU(n) = C*" x C~ with Chern classes ¢*C*,¢*C~.

Now, spaces L C T @ T* correspond to canonical bundes Ky C Q*(M).

Proposition 5. A generalized complex structure is equivalent to a complex Dirac structure of real index 0,
i.e. to a Dirac structure L C (T ®T*)®C s.t. LN L = {0}.

Proof. «: given L, set J = i|r, + (—i)|z, and obtain
{J(a+B),I(a+ B)) = (ia —iB,ia — if) = (@, B) + (B,a) = (a + B, a + 5) (32)
—: given J, set L = Ker (J —i1), so
(a,8) = {Ja,JB) = —(a, ) =0 (33)
O

Therefore, (T & T*) ® C = L & L, and we obtain a transverse complex Dirac structure. This gives us a
Z-grading on S ® C = Q*(M,C) as

(KL = Z/{n) OUp—1D - @u—n—&-I 52 (u—n = Kf) (34)

with conjugation exchanging Uy and U_y.
Definition 20. K; =U_, is the canonical line bundle of the generalized complex structure.
Furthermore, the decomposition dg = 9 + 0 gives the general Dolbeault complex via 0 : Uy, < Uy_1 : 0.

Problem. Use the Mukai pairing between K, and K, to show that 2c;(Kp) = ¢} + ¢ .
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12.1.1 Z-grading on spinors

Let J be a generalized complex structure: then J € so(7' @ T*). The transformtation e?? behaves like e*
and thus defines an S* action on T'@® T* and thus, by the spin representation, on on 2*(M) (in fact, we
can imagine this as cos# -1+ J -sin#). Just as (T @© T*) ® C decomposes as L @ L, we have

J(z,¢) = [J,2] - ¢+ x - J¢, where [J, x] is the so-action. Thus, for an eigenvector = € L, Jx = iz, then
Jxé = xJ¢ + i¢. That is, the action of L increases by i, while L decreases by i, givng us a diagram

L L
—_— —
Kf =U_, u7n+1 te Un—1 U, = Ky, (35)
L L
Since the eigenvalues are symmetric, they must be {—ni, (—n +1)i,...,ni}, with U}, the ik-eigenspace of J.

Now, via the decomposition dy = 0 + d, we can form another real differential operator
d’ =[d,J] = [0+ 0,]]. Applying this to ¢* gives

[d, J)¢* = ik(D + D) — i(k + 1)d¢ — i(k — 1)dp = i(D — D) (36)

Thus, d¥ = i(0 — 9), and (d*)? = 0 as desired. B
For each GCS, we obtain three complexes: (C*°(A\" L*),dy) and the pair (U*,d), (U*, D).

Proposition 6. (C®(A\" L*),dy) is elliptic.

Recall that in general, this is not true. In particular, in the case of Poisson structures, the complex is
infinite dimensional.

Proof. Since L is a Lie algebra, we obtain a symbol sequence
k+1

k/_\l L* _,Se /k\L* _,Se /\ L* (37)

where S¢(¢) = 7" A ¢ for a given £ € T* real. If £ # 0, it can be decomposed as a+@ € L @ L with a # 0.
Moreover, for x € L, we have

(&) (z) = £(mz) = (€, 2) = (a + @, z) = (@, z) (38)
so m*¢ = @ is nonzero. O

Corollary 4. H*(L), H*(L) are finite dimensional on compact generalized complex manifolds.

For the other complex, we have that dy (f¢) = df AN ¢+ fduo = (drf +dpf)é + fdug, so that
o(fe) = (drf)o + fO9.

Problem. Using the right derived bracket, show that (dpz)- = [0, 2] for z € C®(\" L*).

By the above, we have a symbol sequence ¥~ «5¢ /¥ 5S¢ 1f*+1 given by the anihilation operator
Se(¢) = @¢ which is also an exact sequence. Doing a similar procedure for 9, and following the above logic
(replacing the Clifford action with the wedge product), we obtain:

Corollary 5. Hg(M),Hg(M) are finite dimensional for compact generalized complex manifolds.

Remark. One has a spectral sequence HY 5(M ) = Hj_(M). Moreover, this spectral sequence is trivial

(ie. Hj, = H5(M) if the 00-lemma holds for M: if da = 0 and a = 93, then a = 99 for some . In
other words,

Im 0 NKer d =Ker 9N Im d = Im 99 (39)
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Finally, we obtain actions of H*(L), H*(L) on HX(M), H;(M) respectively via

k
Oz -¢) = (dpx) - ¢+ (=1)*x- ¢,z € /\L (40)
Problem. Show the above statement.

This statement implies drpz = [0, 2], so dpz = 0,06 =0 = J(x - ¢) = 0, making the action well-defined.

12.1.2 Complex Case
—J

Given an almost-complex structure J, we obtain a generalized complex structure J; = g ) We
claim that J; is integrable w.r.t. [,] < J is integrable. To see this, decompose L = Tp ; @ 17, and choose
elements z,y € Ty 1,§,m € T7y. One obtains

[xa y] + Lyn — Zyd€ = [mv y] + ixgn - Zugf (41)

where [z,y] € Tp1 < J is integrable, and L,n = i,dn = i,(0n + dn) = i,0n because 91 € /\2 Ty, and thus
does not survive 7.

Remark. Adding a term i,%,H to the above expression, where H # 0, we find that
iziyH €Ty oVa,y € Ty & H©3) =0, i.e. the gerbe is homogeneous. This is similar to the fact that
FZ9 =0 for (L, V) holomorphic.

We have two different complexes:

1. First, the complex (C*(A\* L*),dr), where

k p p
AL = @ (AT ® (ATsy) (42)

ptg=Fk
and the differential map is given by the individual partials

p+1

p P P
9:C*(N\Tow \NTg1) — C(A\Tio® N\ Tiy) (43)
That is, each of the bundles /\p Th,0 has a B operator and dy, is their sum. This implies that

P k—1
HYL)= @@ HY(N\Tio) =H (NTio) @ H' () Tio) @ & H(O) (44)
p+q=k

2. Second, we have the complex (4*,0) as defined above. Note first that, being the canonical bundles,
we have that K =U" = \" 17 = Q™0 (similarly, KT =U"" = Q™% By the decomposition
L =Ty, +17Y,, we find that L acts on each Q%! by either increasing k or decreasing [, giving us our
sequence as the decomposed Hodge diamond

QO’O
QO,n—l Qn—l,O
Qlin . : - Qnil
Qmn

Ky =% 00 =Ky (45)

That is, U* = @p_q:k QP-4 with the boundary maps given by the usual ones on 2 and
Hg(M) = @pfq:k H@dg(M)
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12.1.3 Symplectic Case
—wt
w

) . Given an

Given a symplectic form w, we obtain a generalized complex structure J, = <

o x
i-eigenvector ( ¢ >, we have

w(@) —w () =iz +if = in=w(r) (46)

Thus, L ={z —iw(z) : 2 €e T®C} =T_;,, where I'_;,, denotes the graph of —iw : TQC - T*®C, is a
simple Dirac structure. Moreover, Q, is integrable w.r.t. [,|g < dgo = 0. In our case, we have
d(—w) = —H A (—iw), so dw and H must be 0 (i.e. w is symplectic). We again get two complexes

L (C*°(A" L*)dL) = (C®(\"T* @ C),d) is trivial, and H*(L) = H},(M). However, one does have a
nontrivial Gerstenhaber structure (C°°(A\* L*),dr,[,]+), and one has an equivalence between (L, L)
and (T'® C,T"(p,,)-1) (the Lie bialgebroid of a complex Poisson structure).

2. The ends of the complex (U*,d) can be simply exhibited as K, = (¢™), K = (e~*). The next term
can be computed via

UM = (X —iwX)e ™ = —iw(z) Ne ™ —iw(z) Ne ™ =™ . Q! (47)

071
The higher terms are more complicated: given general invertible o, the transformation e~ “e 2z on
TeT*sends T - T, (ie. 1 »e?)and T —T'_, (ie. Q" — e~ 7). Thus, we find that

ut = eiwe%Q”_k (48)

Letting L, A denore the maps ¢ +— w A ¢, ¢ —= —i,—1¢, we obtain the expression U* = elLe= 2k,

-1
These maps arise via the decomposition of J as ( W > + ( w ) Setting

wew (80 (10) (0 ) o

we find that [H, L] = —2L and [H, A] = 2A. These are precisely the s[oR commutator relations,
giving us associated actions on the symplectic manifold. In particular, H acts as

Ho = %tr(id) — (id*)¢ = sum(n — k)med (50)

where 7, : Q — QF is the projection. Via our decomposition of J, we find that

d? =[d,L+ A] = [d,A] = § is a degree —1 operator with §2 = 0 (called the symplectic adjoint of d)
and 0 = d —i6 : U* — U*~1. Using an analogous dd (or 99) lemma for symplectic manifolds, we find
that any cohomology class oo € H}j; has a d-closed representation (since da = ddy and d(a — ) = 0,
implying that 6(a — dy) = 0). Thus, setting & = a — 7, we find that

[d, J]alpha = 0 & [d,A)Ja@ =0 = d(/\ &) = 0. These statements combine to give an action of (L, A)
on cohomology, i.e. an sloR action on H*(M). Furthermore, L"~* : H*¥ — H?*"~* is an isomorphism,
implying an equivalence between the dd-lemma and the Lefshetz properity (see Cavalcanti thesis for
<).
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12.2 Intermediate Cases

We have studied
J
JJ - < 7(]* ) 7JW

What about the intermediate cases?

I
7N
|

g &
L
~_
‘o
=

e intermediate types and spinors
e Poisson structure
e Local form

e Examples of type jumping by deformation

interpolation

Given a complex bundle T* — E —™ T, let J O E with JT* = T*. Then T* C FE is a complex subspace,
and E/T* = T obtains an almost complex structure J which is integrable. Furthermore,

(JO(X) = (J&, X) = ~(¢,13) = £(J) = —T*¢(X) (52)

ie. Jlp = —J*.
12.2.1 Complex and Symplectic Decompositions
Let S : T — FE be any splitting, i.e. m o s = id|p. Then we can produce a complex splitting by averaging

1

5(5’ —JsJ) =5 (53)
Note. 7(—JsJ)(X) =m(=J(s(JX))) = —J*>X = X, so —JzJ is a splitting.
Observe that, in splitting S’ : E — T @& T™*, we obtain J = ( 7 g >

Problem. Write J is a non-complex splitting using S. Hint: what is the difference between the splittings

S and —JSJ?
Finally, assume that JT* N T* = {0}. Then E = T* & JT* and, in this splitting,

J:(w ‘”4) (54)

where w(X,Y) = (Jz X, 2Y).

12.2.2 General case

In general, T* + JT* is a complex subspace of F, asis T*NJ*T* C T* +JT* C E.
Definition 21. A = 7(T* + JT*) = nJT*.

Note that

Ann A = (T* 4+ T NT* =T*NIT*NT* =T*NJT* (55)

is complex, and IZIIIMX >~ A* @ry3 A has symplectic structure. Also, E/(T* + JT*) = T'/A has a complex
structure, with complex dimension k (called the type).
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Theorem 8. M 1is generally foliated by symplectic leaves with transverse complex structure.
Lemma 5. JT* is Dirac.
Proof. Observe first that the +i eigenspace is closed, i.e.

z—iJz =[x — iJz,y — iJy]
[z,y] — 3z, Jy] — i([z, Jy] + [Jz, y])

= [z, y]
(2, 3] + 02, 9] = J[e, ] — I[J, By (%6)
Jz,Jy] = [z, y] + I([=,Jy] + [J=,y])
Thus, [J¢,In] = [, 1] + J([&, In] + [T, n]) = Ja (note that mta =0 = a € T*). O

Problem. Show that Ny(z,y) = [Jz,Jy] — J[z, Jy] — J[Jz,y] — [z, y] is tensorial and express it in terms of
T, 7.

Problem. e/ T is Dirac V6. Hint: e®T* = ((cos@ - 1) + (sin0)J)(T*) = (1 + tan 6])T*, and

[€ + 13, m + tIn] = t([€, In] + [J€, n]) + 2I([€, In] + [, n)) = (1 + D) (¢([€, In] + [T€, ) (57)
Lemma 6. For small 0, e®*T* is a twisted Poisson structure in a splitting satisfying [r, 7] = /\3 mH.

Taking the derivative -Z(e%’T*) at § = 0, we obtain a tangent vector to Dir(T'@® T™*) at T*: this is a skew
map T* — T, i.e. an element 7 € C°(A*T) s.t. [0, 07] = 037*H —> [r, 7] = 0. Thus, (1) =m,
and 7 : £ — wpJ€ is a Poisson structure, and we can split

J= (;‘,‘ . ) (59)

The proof of the theorem follows from the following two observations:
1. A =1Im (n) is the image of a Poisson structure and thus a generalized distribution.

2. The symplectic structure on A agrees with 7, i.e. for £&,n € A*, w™1(£,n) = (J&,n) = = (&,n).

12.2.3 Weinstein Splitting
Now, assume that the foliation is of locally constant rank near p € M.

Theorem 9 (Weinstein Splitting). For any p € (M, w) Poisson, there exist coordinates
(QIa <o qrsP1y -5 Pry Yl - 7?/[) s.1.

with ¢(0) = 0.
Note. e When £ = 0, this is the Darboux theorem.

e When the rank at p is locally constant, ¢ = 0 in a neighborhood of p. (Lie’s Theorem)

If the rank is locally constant, then J induces a complex structure J on (yi,- -+ ,y2x) which is integrable
since (wz, 7y) = 7(x,y). Moreover, it is independent of the {p;, ¢;}, as
[Jdpi, Jdy;] = J(d{pi,y;}) = 0 (60)

and similarly for g. This gives us a local coordinate system R2("=%) x CF,
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12.2.4 Examples of type jumping

Given a complex structure J; = ( -7 J* > and spaces

2 2 2
L=Ty ®Tre, \NL* = NTro® (Tho®T5,) & \ 15, (61)

we can examine deformations e € /\2 L* s.t. de+ %le,e] = 0.

Example. For ¢ € \? T,

2 3
1 _
</\T1,0®T5‘,1> @/\TI,O > de + 5[676] =0 = 0e=0,[c,e] =0 (62)

i.e. € is a holomorphic Poisson structure.

(1 i)<§>=1+e+e (63)

Letting P = € + €, we obtain a transformation J; — ePJe™F,

(D0 )T DG )G )7 2

(64)

By construction,

for @ = i(¢ — €). Thus, the type is given by n — rkQ.

Example. On CP2, A\? Tio=0(3), and € € H°(O(3)).

12.3 Spinorial Description

Recall that J determines as is determined by the +i-eigenbundle L. Set pi : L — T ® C to be the map
7(L)=FE CT®C. Since L = L(E,¢), kg, = (e°Q), i.e. kz, is generated by products ¢ = eZT«w0; A .. A0
when (0;,...,0;) = Ann E.

Note. However,

1. Let £ € T* bereal: then { =a+a € L L = J¢ =i(a+a) and -
m(a) + (@) =0 = 7(J§) = in(a — @) = 2in(a) = —2in(a). Therefore ENE = A ® C, with
Ann A = (QAQ), and k is the type of J.

2. f*w is nondegenerate on A, as S B
(,0) # 0 & (eBHwQ eB-wQ) £0 & (290, 0) £0 < " FAQAQ#0.

Problem. Show that w™! = 7|a.

Given coordinates (1, ..., Tn—k,D1s- -+ Pnks 21, .-, 2k) fOr Rf,(on_k) x C*, wy = w|a, J has a general spinor
¢ = eBT@dz; A --- Ndz, around each regular point. Here, we are fixing the splitting so that H = 0. Now,
dp=a-¢p=(X+¢&) ¢=d(B+iw) A ¢: by degree considerations, ixQ =0 and ix (B +iw) + £ =0, so
d¢ =0 and d(B + iw) A Q = 0, giving us co-integrability.
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Theorem 10. ¢ = eB'Fiwo Q) with B closed, i.e. J is equivalent to Ri(onfk) x Ck.

Proof. The general strategy is to transfer to some eZ+*Q and use the freedom available to make B closed.
Using the splitting on Ri(o"_k) x CF, we have a decomposition d = ds + 8 + 9. Set A = B + iw: then A
breaks up into a triangle

AQOO
Al 10 AlOl (65)
A02O AOll A002

which acts effectively via exponentiation on Q2°%. Note that, via averaging, we have
wo = wla = 5(A%% — A290). Our goal is to modify the triangle (A0, 4929 A1) 5o that A0, A%2 enter
only in the real part of A. To this end, let C°'! be any real form, and set

A/:A2OO+(A101 —I—W)—‘,—(AOOQ-FAOOQ)—FCOH

— (;(A200+A200)+A101 +A101 +A002+A002 +0011> + %(A200+A200) — B,Jriwo (66)
The condition that dA A Q = 0 gives four constraints on the A%*:
(a)d;A?° =0
DA 1+ g, A0 —

(0) ! (67)

(C)gAlOl + deOO20
(d)0A%% =0

The desire for B’ to be closed requires (dB')%'2? = (dB’)!!! = 0, which gives the following two constraints:

0A%% 1+ 9C =0
(68)
OAM 4 d;C + 9AOL =
We obtain the desired C' via the Dolbeault lemma. For the first constraint, note that (d)
= A%2 = 9a%!. Thus
(1) & 0C + 90a =0 < 9(C — da) = 0 < I(C — da — Ja) =0 (60)
& C —0a—0a=0yp < C=0a+0a+iddy
for x a real function. For the second constraint, note that (c) is true
& 0=0A101 +d;A%% = §(A"! —dra) = A =dsa+ 9B for B a 100-form. This implies that
(2) & d(dja+ 0B) + d(dsa + 9B) + ds(da + da + i00x) = 0 < dO(B — B) = id;d0x (70)
Moreover, (b) is true < A2 4+ d; A0 = 0 & d;03 = —0A?°. Thus,
dr09(B — B) = 09(A?%0 — A200) = (), so we can choose the desired . O

Corollary 6. A GCS on an exact Courant algebroid is locally equivalent, near a regular point, to
R k.
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12.3.1 More Examples of Type Jumping

Recall that we say type jumping via the operator ePHB] Jef(fBJrB). We can see this behavior more explicitly
using forms. Recall that a complex structure on C? a representation by a spinor ¢ = dz; A dzy. Let
B € HY(A>T) be a holomorphic section, e.g. 3 = 2191 A 83 (obviously holomorphic). Then

o= e'3+E<b =dz1 Ndzo + iy 0,08,d21 Ndza = 21 + dz1 A d2o (71)
At z; = 0, this gives the complex structure dz; A dze. Outside z; = 0, we have z1(1 + Biw,
where B + iw = dz%ld@.

d21+dZ2) ~ e
z1
12.3.2 Interpolation

Suppose (g, 1, J) is a Hyperk ahler structure, i.e. (I,g),(J,g) are K ahler and I.J = —JI. Then (K = 1J,g)
is another integrable K ahler structure, and one obtains a family of complex structures
{al +bJ + cK|a? + b? + ¢® = 1} parameterized by 52, all of which are K ahler w.r.t. g.

Remark. This places a strong constraint on g (reduction of holonomy, Ricci-flat metric, i.e. Einstein) but
does not imply that the Riemann curvature is 0. The only known compact examples known are

e K3 surface

o Flat T*

e Hilb"(K3)

e Hilb™(T*)

e Two examples in dimensions 12 and 20 (O’Grady).
Setting w;I = gJ,wg = gK, one obtains

wyl = gJI = —gIJ = I*gJ = [w, (72)

Moreover, considering the GCSs

I -1 -1
JI:< _J* )aJwJ:<wJ W )”UWK:(W}C G ) (73)

one obtains the relations

—Jw;?! —wF I
“]]IJUJJ = < _I*wJ d ) = < —LUJI 7 ) = _“]]LIJJJI (74)

Similarly, J1Ju, = —Ju,dr and J,, 0w, = —Jw,Jw,, whereas JiJ,, = J,,Jr. Thus,
(ad; + bluy + clw,)? = —(a? + b? + ¢?), giving a 2-sphere of GCSs interpolating I — w .

Problem. Show that the intermediate structures are all B-field transforms of symplectic forms.

Note. On (CPQ, for the complex case J;, K =Q", so K = ?(3) and ¢;(K) = —3. For J,, on the other
hand, K = (') and ¢1(K) = 0. So we see that we can never interpolate complex to symmetric. In fact,
for any even general complex structure,

ev 0 2 4
Ksc NTmoc= Ao Ae (75)

there is a canonical projection s : Kj — /\0 = C (i.e. s € C*°(Kj)) which vanishes when type jumps off of
zero. Hence, we see that for a generic GCS in four dimensions, the type change locus is PD to ¢;(K).
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Example. In dimension 4, one has types {0,1,2}, so an odd GCS corresponds to a four-manifold foliated
by 2-d symplectic leaves and transverse complex structure, e.g. 3, X %  or a symplectec surface bundle
over a complex Riemann surface.

Example. In dimension 6, one has types {0,1,2,3}, and one can construct an odd GCS by deforming the
complex structure by a holomorphic Poisson structure (here, the Poisson condition is nontrivial). 0-2
structures?

Problem. Construct an interesting even GCS on a compact 6-manifold.

We now consider examples on Hyperk ahler manifolds. Recall that, for a K ahler manifold one has maps

r— 7
N

s.t. J,w are integrable, ¢ = —wJ, and g* = g & J*w = —wJ. Thus,

() )L
()N )

is a generalized Riemannian metric. The integrability condition can be rephrased as VI = 0 or Vw = 0. As
above, for a Hyperk ahler manifold, we have almost complex structures (I, J, K') which are K ahler w.r.t. g
and satisfy quaternion relations, thereby giving us a 2-sphere of complex structures {al + bJ + ¢K}. This
gives us an integrable complex structure which is K ahler w.r.t. g for {(a,b,c) € S%}.

Now, the relations VI = 0,VJ = 0, VK = 0 reduce the holonomy of our manifold: the first reduces it
U(n), while the second reduces it to the quaternionic unitary group U(n); NU(n); = Sp(n). This is
modeled as follows: set (V,I) to be a complex vector space, with dual V* and anti-complex space V =g
with action i - x = —ix. Then, in the category of vector spaces with C-linear maps, one has a diagram

(77)

V———V
N

with @ a complex symplectic form and h = g + ig(J-, ) the induced hermitian metric. Note that J is
”anti-linear”, in the sense that Ji = —iJ = JI —ilJ. One thus finds that the holonomy reduction forces
the Ricci flow to be trivial, though the whole Riemann tensor need not vanish.

Finally, recall that the only known compact examples are the K3 and T* surfaces, the Hilbert schemes of
both, and the two examples of O’Grady in dimensions 12 and 20. Except for the 7% and Hilb™(T*), the
metrics on these manifolds are not explicit, as they rely on Yau’s existence theorem of Ricci flat metrics on
K ahler manifolds with holomorphic trivial canonical bundle (Q A --- A Q # 0).

12.3.3 Intermediate Types
As earlier, given a Hyperk ahler structure (g, I, J, K = IJ) and setting w; = gI,w; = gJ,wx = gK, we have

an S2-parameterized family of structures aJ; + bl,, + clu . Moreover, observe that JrJ.,, = —J.,Jr, so
_ o —al —bw;!
J=alr +bl,, = ( hoy ol > (79)
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is generalized almost-complex for a? + b = 1. It has Poisson structure —bw;l = —w™!, 50 J could be a

B-field transform
1 —w! 1 o wTlB —w! (80)
B 1 w -B 1) \ w+Bw'B —Bw!

of Jz,,,. This holds if bw; ' B = —al, i.e. B= —fw,I = fwk.

Problem. Check that

1—a?

ij = bUJJ (81)

1 n (a)2 b 1
—w —) bwgw; wg =
b7 b KWj WK
Thus, we find that J = e%‘”k.,]]%w‘,e_%“K is integrable.

In another direction, a small deformation of J; by a holomorphic Poisson structure is a B-symplectic

structure, e.g. take 8 = (wy +iwx) 1,08 =0,[5,5] = 0.

Problem. Show that w; + iwk is a holomorphic, nondegenerate (2,0)-form and therefore
B3 = (wy +iwg)~! is a holomorphic, Poisson, nowhere-vanishing bivector field. Thus, the S-transform is of
symplectic type: determine it explicitly.

12.3.4 Generalized K ahler Geometry

Starting with (I,w;y) in a Hyperk ahler manifold, one can do an infinitesimal deformation by a bivector
tw;l (the real part of the holomorphic Poisson structure (wy + iwg)~%). (...)
Thus, the generalized K ahler structure (J4,Jp) induces a Z x Z-grading on complex differetial forms

S ®C= o, Ur
p+qg=n mod 2 (82)
p+g<n
and that
dy =064 +0_+06_ 404 (83)

maps UP? to YrThatt gyrtlatl gyrtla-l gyr-hatl gyr=14-1 Since Ay, = 1As, (—), we obtain the
Hodge decomposition

Hy(M,C) = P Hr (84)
Now, recall that the key observation leading to the K ahler identities was *|yp.« = 1774

Example. Define the twisted Betti numbers to be the values be*/°? = dim H¢'/°*(M), where, if [H] = 0,
b =" b2k pod = Dok b?*+1. Consider the four-dimensional case as given before: then, if the generalized
K ahler form is of type (ev, ev), one finds that b°? must be even as well, since the action of complex
conjugation is reflected through U°°. Opposingly, if the generalized K ahler form is of type (od, od), b¢”
must be even. In particular, this implies that on CP2, there are no (od, od) generalized K ahler structures
(since b =1+1+1=3).

Now, recall that * = (i)PT¢ satisfies the identity a(a(x)¢) = x¢: in four dimensions, this implies that

a(x) = (=1)*3/2x = x and a(¢) = ¢ is degrees 0,1,4, —¢ in degrees 2,3. Applying this to the (ev, ev) case,
we find that 4% = (Q° + Q%) + Q2 , while =20 + ¢%2 + Y0 + ¢%~2 = (Q° + Q*)_ + Q2. Opposingly,
in the (od, od) case, we find that U%° = (Q13)_, while /"1 Ut~ =02 + (Q° + Q%) and

UM eyt =02 +(Q04+ Q).

Finally, if [H] = 0, * induces a splitting on H? = b2 + b2. Thus, in the (ev, ev) case, bf_ is odd and b; = b3
is even, while in the (od, od) case, both b2 are odd, and just b; is necessarily even. In particular, for the
space CP2#CP?#CP2#CP2, one has twisted Betti numbers 1,0,4,0, 1.
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12.4 Introduction to Hermitian Geometry

Let G = —JaJp: decomposing E = C; @ C_ into +-definite spaces, ones finds that C1 = Ker (G F 1), i.e.

Py = % are the projection operators to C, so that PZ = Py. Recall that, given X € T, one has a

unique pair of lifts X* to C.. We previously obtained C+ = Gr(b = g) in an isotropic splitting, so
g(X,Y):<X+,Y+>:<X7,Y7> (85)

independent of the isotropy choice. Now, since G commutes with J4 and Jp, the C1 are complex
sub-bundles, with J4 = Jp on Cy and J4 = —Jp on C_. Via the isomorphism 7 : Cyx — T, any structure
on C'y can be transported to 7. In particular, the complex structure on C'y gives two almost complex
structures J4, JJ_ on T, both of which are g-orthogonal (since J4 preserves () on Cy). That is, we obtain
almost-Hermitian structures (g,Jy), (g, J-) on T.

Proposition 7. Choose the unique splitting for E where b=0, i.e. E= (GT*)®T* =T ®T*. Then
(Ja,dB) can be reconstructed from (g, J+,J_) as follows:

o JyisJr onCy, J_ on C_
o JpisJ_onCy, JL onC_
That is,

Ja/p = 7T|E¢J+7TP+ + |5t J_mP-

:;<;>J+(1 0)(; gll)i;<_lg>=f(1 0)<_19 _91_1) (86)
() mmye (1)) (0 )

Setting wy = gJ+, w;l = —Jig~ !, one obtains

YT Jo Wl
Tass =35 (( wy —Jf + —w_  —=J*

2
1 1 1 (87)
I A A T I E
2\ wyFwo  —JyFJ
12.4.1 Condition on Types
The above expression implies that m4,p = wll Fw=! are real Poisson structures and wjrl = —J,;g" !, with
types
1.
type(Ja) = idlm r(Ker mq = Ker (J4 — J_))
2 (89)
type(Jp) = idim r(Ker mp = Ker (Jy + J_))
Note that
(T I-) = (T + T )T = J2) (89)
Thus,

1. (Jy — J-), (J+ + J-) have linearly independent kernels.
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2. x = Ker (J; —J_) @ Ker (J4 +J_) C Ker [Jy, J_]
3. If [J, J_]x =0, then

. r+JiJ n r—JiJ_x (90)
2 2
and (Jy + J_)(z + JyJ_x) = 0. Thus, Ker (J; + J_) ® Ker (J; — J_) = Ker [J4, J_], and
type(Ja) + type(Jp) = 2dim gKer [J;, J_].

Corollary 7. type(A) + type(B) < n on M*".

It immediatly follows from this that, since type(A4) + type(B) = n everywhere < [J, J_] = 0, then the
pair (type(A),type(B)) is constant on a connected manifold.

12.4.2 Integrability

As above, we have a map with structure actions J4 O Cy — T O J4 from our decomposed bundle to T'.
Note that the complexifications of these bundles are given by

C,®C=L,9L,,C_C=L_9L_ (91)
,where Ly = LaNLp,L_ = LsNLg. Now, La, Lp are integrable = L. are Courant integrable
— (L) = T are Lie integrable = .J. are integrable = (.Jx, g) are both Hermitian. With the
chosen splitting, we have
Li={X+gX: XeT}"} ={X —iwy X : X € T}"} (92)
L, is closed under H-Courant <
VX, Y € T ixiy(H —idw;) =0 (93)
Similarly,
Lo ={X-gX:XeT")} ={X+iw_X:X cT""} (94)
and L_ is closed under H-Courant <
VX,V € T ixiy (H 4 idw_) =0 (95)

We can rewrite this as
ix’iy(H F idw:t) =0
ixiy (H Fi(00)wx) = 0(since i xiyOws = 0)

o (96)
ixiy(H+diws) =0
H+tdiwy =0
That is, for a generalized K ahler manifold, we must have H = dSw, = —d°w_ in order that Jy is

integrable.

Theorem 11. An abstracted defined Ja g on T'® T*, H defines a generalized K aher structure
& H =dlw; = —d°w_. That is, a generalized K ahler structure over a b-field is a triple (g, Jy,J_) s.t.
dSwy = —d°w_.
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