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13 Lecture 18 (Notes: K. Venkatram) 

13.1 Generalized K ahler Geometry 

Let (JA, JB ) be a generalized K ahler structure: then G = −JAJB is a generalized metric, and taking the 
decomposition T ⊕ T ∗ = C+ ⊕ C−, C± = Γ±g gives JA|C+ = JB |C+ , JA|C− = −JB |C− . Thus, we obtain two 
complex structures J+, J− on T by transport, i.e. J+X = πJAX

+ and J−X = πJAX
−. Since JA is 

compatible with G, this implies that (J+, g), (J−, g) are almost Hermitian. Further, given the splitting of 
the Courant algebroid, JA, JB can be reconstructed from (g, J+, J ) by −

JA = J+|C+ + J−|C− (97)
JB = J+|C+ − J−|C− 

thus giving the formula 

1 −(ω−1 � ω−1)JA/B = 
J+ ± J− + − (98)

2 ω+ � ω− −(J∗ −)+ ± J∗ 

13.1.1 Integrability 

As shown earlier, the integrability of (JA, JB ) is equivalent to the Courant involutivity of LA, LB . 
Specifically, note that 

(T ⊕ T ∗) ⊗ C = LA ⊕ LA = LB ⊕ LB = (LA ∩ LB ) ⊕ (LA ∩ LB ) ⊕ (LA ∩ LB ) ⊕ (LA ∩ LB ) 
(99) 

= L+ ⊕ L− ⊕ L− ⊕ L+ 

Thus, the complex structures on C , and thus on T , are described by the decompositions ±
C+ ⊗ C = L+ ⊕ L+, C− ⊗ C = L− ⊕ L−, and the dimensions of the four spaces on the rhs are the same. 
Finally, since T1

+ 
,0 = +i for J+ = L+ (and similarly, T1

−
,0 = L ), we have integrability LA, LB are− ⇔

involutive = L is involutive. The latter impliciation is in fact an iff: ⇒ ± 

Proposition 8. L± involutive = ⇒ L+ ⊕ L−, L+ ⊕ L− involutive. 

Proof. Using the fact that 

�[a, b], c� · φ = [[[dH , a], b], c] φ = a b c dH φ (100)· · · · 

for any φ pure, a, b, c ∈ Lφ, we find that �[a, b], c� defined a tensor in L∗ 
φ. Let a ∈ L+, b ∈ L− be elements. 

Then, for any x ∈ L+, �[a, b], x� = �[x, a], b� = 0. Similarly, for any x ∈ L−, �[a, b], x� = �[b, x], a� = 0. Thus, 
[a, b] ∈ L+ ⊕ L−. 

However, as we saw last time, 

L± = {X ± gX|X ∈ T± 
1,0 } = {X � iω±X|X ∈ T± 

1,0 } (101) 

and so L± are integrable ⇔ T± 
1,0 are integrable and iX iY (H � idω±) = 0∀X,Y ∈ T± 

1,0 . Using the 
1,0integrability of J±, we can write the latter expression as iX iY (H � i(∂± + ∂±)ω±) = 0∀X,Y ∈ T± . Since 

∂±ω± is of type 1, 2, it is killed, and 

dc ω+ + dc ω = 0 
iX IY (H ± dc ω ) = 0 H ± dc ω = 0 +

+ =
−
−
−
H 

(102)± ± ⇔ ± ± ⇔ 
dc ω+ 

Finally, we obtain the following result. 
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Theorem 12. Generalized K ahler structures on the exact Courant algebroid E M , modulo non-closed →
B-field transforms (choice of splitting) are equivalent to bi-Hermitian structures (g, J+, J ) s.t. 
dc ω+ + dc ω = 0, ddc ω+ = 0, and [dc ω+] = [E] ∈ H3(M, R). 

−

+ − − + +

Remark. This geometry was first described by Gates, Hull, Roček as the most general geomtry on the 
target of a 2-dimensional sigma model constrained to have N = (2, 2) supersymmetry. Note that the 
special identities giving a (p, q) decomposition of H∗ (M, C) are a consequence of the special identities H 
required by SUSY. However, they are only clear when viewed in terms of (JA, JB ) rather than J±. 

We can use this theorem to construct several new examples of generalized K ahler and generalized complex 
structures. 

Example. Let G be an even-dimensional, compact, semisimple group, and choose an even-dimensional 
Cartan subalgebra h ⊂ g ⊗ C. The root system splits into ±re roots, giving a decomposition g ⊗ C = τ ⊕ τ 
which is closed onder the Lie bracket. Thus, by left or right translating, we get an integrable complex 
structure on G, and since the root spaces are killing-orthogonal, we have a bi-Hermitian structure 
(g, JL, JR), with g the killing form. Now, recall the Cartan 3-form H(X,Y, Z) = g([X,Y ], Z) and notice 
that 

A = dc 
LωL(X,Y, Z) = dωL(JLX, JLY, JLZ) = −ωL([JLX, JLY ], JLZ) + c.p. 

= −g(JL[JLX,Y ] + JL[X, JLY ] + [X,Y ], Z) + c.p. (103) 
= (2g([JLX, JLY ], Z) + c.p.) − 3H(X,Y, Z) = −2A − 3H 

Thus, dc ωL = −H; since the right Lie algebra is anti-isomorphic to the left, dc ωR = H, and (G, g, JL, JR)L R

is a generalized K ahler structure unique w.r.t. Hcartan. Finally, we obtain the generalized complex 
structures 

= 
JL ± JR L R (104)JA/B ωL � ωR 

−
−
(ω
(J

−

∗ 

1 � ω

R

−

) 

1) 
L ± J∗ 

on G.

What are their types? Since ωL = gJL, ωR = gJR,


−(ω−1 � ω−1) = (JL � JR)g−1 

(105)L R 

JL ± JR = Rg∗(Rg−1 Lg∗J ± JRg−1 Lg∗)Lg−1∗ ∗ ∗ 

Thus, the rank of (JA, JB ) at g is simply (rk[J, Ad g ], rk{J, Ad g}). 

Problem. Describe the symplectic leaves of (JA, JB ) for G = SU(3). 

In the simplest case, Q = [J+, J ]g−1 = 0, so that type A + type B = n = constant types. As earlier, 
since [J+, J ] = 0, we have a decomposition T ⊗ C = A ⊕ B ⊕ A ⊕ B, with A = T + , B = T + 

−

− ⇒ 

1,0 ∩ T1
−
,0 1,0 ∩ T0

−
,1. 

Note that A,B are integrable since T1
+ 
,0, T 1

−
,0 are. Also, note that 

A ⊕ A = Ker (J+ − J−) = Im (J+ + J−) = Im πA is integrable, as is B ⊕ B. 

Proposition 9. A,B are holomorphic subbundles of T1
+ 
,0. 

Proof. Define ∂X0,1 Z1,0 = [X,Z]1,0 . For Z ∈ C∞(A),X = X + XB , [X,Z]1,0 = [X,Z]A + [X,Z]B , with A 
the latter term being zero since [X ,Z] is still in A ⊕ A and [X ,Z] is in the integrable space A ⊕ B.A B 
Thus, A (and similarly B) give J holomorphic splittings of TM .± 
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