2 Lecture 2 (Notes: A. Rita)

2.1 Comments on previous lecture
(0) The Poincaré lemma implies that the sequence
L O (AT L oo (AR —L 0o (ARFITY) —
is an exact sequence of sheaves, even though it is not an exact sequence of vector spaces.

(1) We defined the Lie derivative of a vector field X to be Lx = [tx,d]. Since tx € Der™'((M)) and
d € Der™(Q(M)), we have

[Lx,d] =xd— (—1)(1)'(_1)dLX = ixd+dix

(2) w:V — V* w* = —w If w is an isomorphism, then for any X € V' we have w(X, X) =0, so that

X € X¥ =Ker w(X) =w 'Ann X

o

Thus, we have an isomorphism w* : X¢/(X) — Ann X/ (wX) and

Am X (X)" <X“’)

WXy Xer A\

Then using induction, we can prove that V must be even dimensional.

2.2 Symplectic Manifolds

(continues the previous lecture)
For a manifold M, consider its cotangent bundle T M equipped with the 2-form w = df, where 0 €

QY(T*M)is such that 0,(v) = a(m.(v)). In coordinates (x',...,2" a1,...,a,), we have § = Y, a;dz’ and
therefore df = )", da; A dz’, as in the Darboux theorem. Thus, T*M is symplectic.

Definition 6. A subspace W of a symplectic 2n— dimensional vector space (V,w) is called isotropic if w|w =

0.
W is called coisotropic if its w-perpendicular subspace W* is isotropic.
W is called Lagrangian if it is both isotropic and coisotropic.
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There exist isotropic subspaces of any dimension 0, 1,...,n, and coisotropic subspaces of any dimension
n,n~+1,...,2n. Hence, Lagragian subspaces must be of dimension n.
We have analogous definitions for submanifolds of a symplectic manifold (M, w):

Definition 7. L 4, (M,w) is called isotropic if f*w = 0. When dim(L) = n it is called Lagrangian.

The graph of 0 € C*° (M, T*M), which is the zero section of T* M, is Lagrangian.

More generally, I'¢, the graph of £ € C*°(M,T*M) is a Lagrangian submanifold of T*M if and only if
d¢ = 0. It is in this sense that we say that Lagrangian submanifolds of T*M are like generalized functions:
f € C>(M) gives rise to df, which is a closed 1—form, so I'qy C T*M is Lagrangian.

Proposition 1. Suppose we have a diffeomorphism between two symplectic manifolds, ¢ : (My,wo) —
(My,w1) and let w; : My x My — M;, i = 0,1 be the projection maps.
Then, Graph(p) C (Mo x My, mjwo — mjwi) is Lagrangian if and only if ¢ is a symplectomorphism.

2.3 Poisson geometry

Definition 8. A Poisson structure on a manifold M is a section m € C*°(A*(TM)) such that [r,7] = 0,
where [-, -] is the Shouten bracket.

Remark. [r,7] € C®(A3(TM)), so for a surface (2, all 7 € C®(A%(TM)) are Poisson.
This defines a bracket on functions, called the Poisson bracket:

Definition 9. The Poisson bracket of two functions f,g € C*°(AY(TM)) is

{f,9} =m(df,dg) = (df Ndg) = [[m, f], 4]

Proposition 2. The triple (C*°(M),-,{,}) is a Poisson algebra, i.e., it satisfies the properties below. For
f,9.h € C=(\UTM)),

o Leibniz rule {f,gh}t ={f, 9} h+ g{f, h}
o Jacobi identity: {f,{g,h}} + {g,{h, f}} +{h,{f,9}} =0

8/\8

Problem. Write {f, g} in coordinates for m = 7% 575 A 575.

A basic example of a Poisson structure is given by w™!, where w is a symplectic form on M, since
whw!]=0sdv=0 (6)
Problem. Prove @ by testing dw(Xy, X4, Xp), for f,g,h € C°(M).

Poisson manifolds are of interest in physics: given a function H € C°°(M) on a Poisson manifold (M, ),
we get a unique vector field Xy = n(dH) and its flow Flg(H. H is called Hamiltonian, and we usually think
about it as energy.

We have Xy (H) = n(dH,dH) = 0, so H is preserved by the flow. What other functions f € C*(M)
are preserved by the flow? A function f € C°°(M) is conserved by the flow if and only if Xg(f) = 0,
equivalently {H, f} =0, f commutes with the Hamiltonian.

If we can find k conserved quantities, Hy = H, Hy, Ha, ..., Hy such that {Hy, H;} = 0, then the system
must remain on a level surface Z = {z : (Hy,..., Hy) = ¢} for all time. Moreover, if {H;, H;} for all ¢, j
then we get commutative flows F’ l}HY . If Z is compact, connected, and k = n, then Z is a torus T", and the
trajectory is a straight line in these coordinates. Also, T™ is Lagrangian.



Problem. Describe the Hamiltonian flow on T*M for H = «* f, with f € C*°(M) and 7 : T*M — M.
Show that a coordinate patch for M gives a natural system of n commuting Hamiltonians.

Let us now think about a Poisson structure, m : T* — T and consider A = Imw. A is spanned at each
point = by 7(df) = X, Hamiltonian vector fields. The Poisson tensor is always preserved:

LXfW = [ﬂ—?Xf} = [7Ta [7‘—7 f]] = [[W’ﬂ ’f] + (_1)1.1 [Wv [Wa fH = - [777 ["Tv fH
- LXfﬂ' =0

If Ay = (X4,,...,Xy,), then Fl_t,é1 0...0 Fl%k (xg) sweeps out S 3 zy submanifold of M such that
TS = A.
Example (of a generalized Poisson structure). Let M = g*, for g a Lie algebra, [,-] € A%g* ® g. Then
TM =M x g* and T*M = M x g, and also A2(TM) = M x A%g, so [-,] € C®°(A*Tg*).

Given f1, fo € C°°(M), their Poisson bracket is given by {f1, fo} (x) = ([df1, df2] , x).

For f,g € g linear functions on M, we have

X¢(9) = ([f,9],7) = (adyg,z) = (g, —ad}z)

Thus Xy = fad;‘l, so the the leaves of A = Im7 are coadjoint orbits. If S is a leaf, then

0 — N§f —T*g —T|s —0

T"|s

is a short exact sequence and we have an isomorphism 7, : T*S = =3 = TS, which implies that the leaf
S is symplectic.

Given f,g € C*(S), we can extend them to f,.geCc™ (M). The Poisson bracket {f,g} is independent
of choice of f, g, so {f,9}.. = {f,g} is well defined.

Therefore, giving a Poisson structure on a manifold is the same as giving a “generalized” folliation with
symplectic leaves.

When 7 is Poisson, [, 7] = 0, we can define
dp = [10,-] : C°(ANFT) — C°(AFTIT)
Note that [r, ] is of degree (2 — 1), so it makes sense to cal it d,. Also,
dz(A) = [m, [, A]] = [[r, 7], A] =[x, [r, A]] = — [m, [r, A]]

™
—=d>=0
Thus, we have a chain complex

s C®(AFTLT) L oo (ART) L oo (AR LT —

Moreover, if my denotes multiplication by f € C* (M),

[dr,ms] = de(fY) = fdatp = [, fb] = flm, ] = [m, fIN Y = v Ao

But for any £ € T, € £ 0, (tem)A : AFT — AFHLT is exact only for tem # 0. So, if 7 is not invertible, d
is not an elliptic complex, and the Poisson cohomology groups, H*(M) = Ker dy|sxr/Im dy|sx-17 could be
infinite dimensional on a compact M.

Let us look at the first such groups:

HY(M)={f:d.f =0} ={f: X; = 0} = {Casimir functions, i.e. functions s.t.{f, g} = 0 for all g}
HX(M)={X:d,X =0} /Im d, = {infinitesimal symmetries of Poisson vector fields} /Hamiltonians
H2(M) = {P € C*°(A°T) : [z, P] = 0} = tangent space to the moduli space of Poisson structures



