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2 Lecture 2 (Notes: A. Rita) 

2.1 Comments on previous lecture 

(0) The Poincaré lemma implies that the sequence 

. . . −→C∞(∧k−1T ∗) d kT ∗) d k+1T ∗) −→ . . . −→ C∞(∧ −→ C∞(∧


is an exact sequence of sheaves, even though it is not an exact sequence of vector spaces.


(1) We defined the Lie derivative of a vector field X to be LX = [ιX , d]. Since ιX ∈ Der−1(Ω.(M)) and 
d ∈ Der+1(Ω.(M)), we have 

[ιX , d] = ιX d − (−1)(1)·(−1)dιX = ιX d + dιX 

(2) ω : V −→ V ∗, ω∗ = −ω If ω is an isomorphism, then for any X ∈ V we have ω(X,X) = 0, so that 

X ∈ Xω = Ker ω(X) = ω−1Ann X 

=∼Thus, we have an isomorphism ω∗ : Xω/ �X� −→ Ann X/ �ωX� and 

Ann X �X�∗ 
Xω ∗ 

= = 
�ωX� (Xω)∗ �X� 

Then using induction, we can prove that V must be even dimensional. 

2.2 Symplectic Manifolds 

(continues the previous lecture) 
For a manifold M , consider its cotangent bundle T ∗M equipped with the 2-form ω = dθ, where θ ∈

Ω1(T ∗M)is such that θα(v) = α(π (v)). In coordinates (x1, . . . , xn, a1, . . . , an), we have θ = i aidx
i and ∗

therefore dθ = dai ∧ dxi, as in the Darboux theorem. Thus, T ∗M is symplectic. i 

Definition 6. A subspace W of a symplectic 2n−dimensional vector space (V, ω) is called isotropic if ω|W = 
0. 

W is called coisotropic if its ω-perpendicular subspace W ω is isotropic. 
W is called Lagrangian if it is both isotropic and coisotropic. 
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There exist isotropic subspaces of any dimension 0, 1, . . . , n, and coisotropic subspaces of any dimension 
n, n + 1, . . . , 2n. Hence, Lagragian subspaces must be of dimension n. 

We have analogous definitions for submanifolds of a symplectic manifold (M,ω): 

f
Definition 7. L � (M,ω) is called isotropic if f∗ω = 0. When dim(L) = n it is called Lagrangian.→ 

The graph of 0 ∈ C∞(M,T ∗M ), which is the zero section of T ∗M , is Lagrangian. 
More generally, Γξ, the graph of ξ ∈ C∞(M,T ∗M) is a Lagrangian submanifold of T ∗M if and only if 

dξ = 0. It is in this sense that we say that Lagrangian submanifolds of T ∗M are like generalized functions: 
f ∈ C∞(M) gives rise to df , which is a closed 1−form, so Γdf ⊂ T ∗M is Lagrangian. 

Proposition 1. Suppose we have a diffeomorphism between two symplectic manifolds, ϕ : (M0, ω0) 
(M1, ω1) and let πi : M0 × M1 → Mi, i = 0, 1 be the projection maps. 

→ 

Then, Graph(ϕ) ⊂ (M0 × M1, π0 
∗ω0 − π1 

∗ω1) is Lagrangian if and only if ϕ is a symplectomorphism. 

2.3 Poisson geometry 

Definition 8. A Poisson structure on a manifold M is a section π ∈ C∞(∧2(TM)) such that [π, π] = 0, 
where [·, ] is the Shouten bracket. ·

Remark. [π, π] ∈ C∞(∧3(TM)), so for a surface Σ(2), all π ∈ C∞(∧2(TM)) are Poisson. 

This defines a bracket on functions, called the Poisson bracket: 

Definition 9. The Poisson bracket of two functions f, g ∈ C∞(∧0(TM )) is 

{f, g} = π(df, dg) = ι(df ∧ dg) = [[π, f ] , g] 

Proposition 2. The triple (C∞(M), ·, { , }) is a Poisson algebra, i.e., it satisfies the properties below. For 
f, g, h ∈ C∞(∧0(TM)), 

• Leibniz rule {f, gh} = {f, g} h + g {f, h} 

• Jacobi identity: {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0 

Problem. Write {f, g} in coordinates for π = πij ∂ ∂ 
∂xi ∧ ∂xj . 

A basic example of a Poisson structure is given by ω−1, where ω is a symplectic form on M , since 

ω−1, ω−1 = 0 dω = 0 (6) ⇔ 

Problem. Prove (6) by testing dω(Xf , Xg, Xh), for f, g, h ∈ C∞(M). 

Poisson manifolds are of interest in physics: given a function H ∈ C∞(M) on a Poisson manifold (M,π), 
we get a unique vector field XH = π(dH) and its flow Flt . H is called Hamiltonian, and we usually think XH 

about it as energy. 
We have XH (H) = π(dH, dH) = 0, so H is preserved by the flow. What other functions f ∈ C∞(M) 

are preserved by the flow? A function f ∈ C∞(M) is conserved by the flow if and only if XH (f) = 0, 
equivalently {H, f} = 0, f commutes with the Hamiltonian. 

If we can find k conserved quantities, H0 = H,H1,H2, . . . ,Hk such that {H0,Hi} = 0, then the system 
must remain on a level surface Z = {x : (H0, . . . ,Hk) = �c} for all time. Moreover, if {Hi,Hj } for all i, j 
then we get commutative flows Flt . If Z is compact, connected, and k = n, then Z is a torus Tn, and the XHi 

trajectory is a straight line in these coordinates. Also, Tn is Lagrangian. 
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Problem. Describe the Hamiltonian flow on T ∗M for H = π∗f , with f ∈ C∞(M) and π : T ∗M M . 
Show that a coordinate patch for M gives a natural system of n commuting Hamiltonians. 

→ 

Let us now think about a Poisson structure, π : T ∗ → T and consider Δ = Imπ. Δ is spanned at each 
point x by π(df) = Xf , Hamiltonian vector fields. The Poisson tensor is always preserved: 

LXf π = [π,Xf ] = [π, [π, f ]] = [[π, π] , f ] + (−1)1·1 [π, [π, f ]] = − [π, [π, f ]] 

= LXf π = 0 ⇒ 

If Δx0 = , . . . , Xfk �, then Flt1 ◦ . . . ◦ Fltk (x0) sweeps out S � x0 submanifold of M such that �Xf1 X1 Xk 

TS = Δ.


Example (of a generalized Poisson structure). Let M = g∗, for g a Lie algebra, [ 2g∗ ⊗ g. Then
·, 
2

·] ∈ ∧
TM = M × g∗ and T ∗M = M × g, and also ∧2(TM) = M × ∧ g, so [ ] ∈ C∞(∧2T g∗).·, ·

Given f1, f2 ∈ C∞(M), their Poisson bracket is given by {f1, f2} (x) = �[df1, df2] , x�.

For f, g ∈ g linear functions on M, we have


Xf (g) = �[f, g] , x� = �adf g, x� = g, −ad∗ 
f x


Thus Xf = −ad∗ , so the the leaves of Δ = Imπ are coadjoint orbits. If S is a leaf, then
f 

π 
S0 −→ NS 

∗ −→ T ∗| −→ T |S −→ 0 

=is a short exact sequence and we have an isomorphism π : T ∗S = T
N

∗

∗
|
S 
S 

∼
TS, which implies that the leaf ∗ →

S is symplectic. � � 
Given f, g ∈ C∞(S), we can extend them to f, ˜ g̃ ∈ C∞(M). The Poisson bracket f, ˜ g̃ is independent � � π 

of choice of f, ˜ g̃, so {f, g}π = f, ˜ g̃ is well defined. 
∗ π 

Therefore, giving a Poisson structure on a manifold is the same as giving a “generalized” folliation with 
symplectic leaves. 

When π is Poisson, [π, π] = 0, we can define 

dπ = [π, ·] : C∞(∧kT ) → C∞(∧k+1T ) 

Note that [π, ] is of degree (2 − 1), so it makes sense to cal it dπ. Also,·

d2 (A) = [π, [π,A]] = [[π, π] , A] − [π, [π,A]] = − [π, [π,A]]π 

= d2 = 0 ⇒ π 

Thus, we have a chain complex 

dπ dπ . . . −→ C∞(∧k−1T ) −→ C∞(∧kT ) −→ C∞(∧k+1T ) −→ . . . 

Moreover, if mf denotes multiplication by f ∈ C∞(M), 

[dπ,mf ] ψ = dπ(fψ) − fdπψ = [π, fψ] − f [π, ψ] = [π, f ] ∧ ψ = ιdf π ∧ ψ 

But for any ξ ∈ T ∗, ξ = 0, (� ιξπ)∧ : ∧kT → ∧k+1T is exact only for ιξπ =� 0. So, if π is not invertible, dπ 

is not an elliptic complex, and the Poisson cohomology groups, Hπ
k(M) = Ker dπ |∧k T /Im dπ |∧k−1T could be 

infinite dimensional on a compact M . 
Let us look at the first such groups: 

H0(M) = {f : dπf = 0} = {f : Xf = 0} = {Casimir functions, i.e. functions s.t. {f, g} = 0 for all g}π 

H1(M) = {X : dπ X = 0} /Im dπ = {infinitesimal symmetries of Poisson vector fields} /Hamiltonians π 

Hπ 
2(M) = P ∈ C∞(∧2T ) : [π, P ] = 0 = tangent space to the moduli space of Poisson structures 
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