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16 Lecture 21-23 (Notes: K. Venkatram) 

16.1 Linear Algebra 

We define a category H whose objects are pairs (E, g) (sometimes denoted E for brevity), where E is a 
finite dimensional vector space /R and g is a nondegenerate symmetric bilinear form on E with signature 0, 
and whose morphisms are maximal isotropies L ⊂ E × F . Here, E �→ E = (E, −g) is the natural 
involution, and E × F = (E × F, gE + gF ) is the natural product structure. Composition is done by 
composition of relations, i.e. E L F M G,M L = {(e, g) ∈ E × G|∃f ∈ Fs.t.(e, f) ∈ L, (f, g) ∈ M}.→ → ◦ 

Proposition 11. M ◦ L is a morphism in H. 

Proof. L : L × M ⊂ E × F × F × G = W is maximally isotropic. C = E × ΔF × G, where 
ΔF = {(f, f)|f ∈ F }, is coisotropic, i.e. C⊥ = ΔF ⊂ C. Thus, we get an induced bilinear form on 
C⊥/C = E × G. C ∩ L + C⊥ is maximaly isotropic in W , so 

(C ∩ L + C⊥)⊥ = (C⊥ + L⊥) ∩ C = C⊥ + L ∩ C (125) 

Thus, C ∩ L + C⊥/C⊥ = M ◦ L ⊂ C/C⊥ = E × G is maximally isotropic. 

Remark. This cateogory is the symmetric version of the Weinstein’s symplectic category ζ where 
Ob(ζ) = (E,ω) and morphisms are given by Lagrangians. Thus, is the the ”odd” version or parity reversal 
of ζ. 

A particular case of a morphism E F is the graph of an orthogonal morphism. → 

Problem. Show that L : E F is epi πF (L) = F , mono πE (L) = E, and iso L is orthogonal iso → ⇔ ⇔ ⇔
E F .→ 

So for dim E = 2n,O(n, n) ⊂ Hom(E,E) are isos. But Hom(E,E) ∼= O(2n) as a space since we can choose 
a positive definite C+ and then any L ∈ O(2n). This implies that Hom(E,E) is a monoid compactifying 
the group O(E). 

53 

Continued on next page...



� 

16.1.1 Doubling Functor 

Now, there is a nature ”Double” functor D : Vect → H which maps V �→ V ⊕ V ∗ and 
{f : V → M} �→ {Df = {(v + F ∗η, f∗v + η) ∈ V ⊕ V ∗ × W ⊕ W ∗|v ∈ V, η ∈ W ∗}}. Note that 
Df ⊂ DV ×DW and dim Df = dim V + dim W . 

�(v + f∗η, f∗v + η), (v + f∗η, f∗v + η)� = −f∗η(v) + η(f∗v) = 0 (126) 

Problem. Prove that D is a functor, i.e. D(f ◦ g) = Df ◦ Dg. 

Note that H has a duality functor L ∈ Hom(E,F ) = L∗ ∈ Hom(F,E), where L∗ = {(f, e)|(e, f) ∈ L}.⇒ 

Problem. Show that D(f∗) = (Df)∗. 

Problem. Prove that D preserves epis and monos. 

16.1.2 Maps Induced by Morphisms 

A morphism L ∈ Hom(E,F ) induces maps L ◦ − : Hom(X,E) � Hom(X,F ) : L∗ ◦ −. A special case is 
X = {0}, in which Hom(0, E) = Dir(E), so L ∈ Hom(E,F ) induces maps L : Dir(E) � Dir(F ) : L∗. If L∗ 

is mono or epi, so is L∗. This recovers the pushforward and pullback of Dirac structures: for f : V W a→
linear map, Df : DV → DW a morphism we obtain maps Df : Dir(V ) � Dir(W ) : Df∗. As observed ∗ 

earlier, any Dirac L ⊂ V ⊕ V ∗ with πV (L) = M ⊂ V can be written as L(M,B), B ∈ 
�2 

M∗, i.e. L = j ΓB∗
for j : M �→ V the embedding and a unique B. That is, L = j∗eB M . 

Example. Given f : V → W a linear map, Df ⊂ DV ×DW = D(V ⊕ W ∗). and 
Df = ((v, f∗η), (f∗v, η) ), hence πV ⊕W ∗ Df = V ⊕ W ∗ is onto. Therefore, Df = eB (V ⊕ W ∗), and in fact · · · 
B = f ∈ V ∗ ⊗ W ⊂ 

�2(V ⊕ W ∗)∗. 

16.1.3 Factorization of Morphisms L : DV → D(W ) 

Let L ∈ Hom(DV, DW ), L ⊂ DV ×DW ∼ ∗e
F M , for M Let = D(V ⊕ W ). Then L = j = πV ⊕W L ⊂ V ⊕ W . 

φ : M V, ψ : M W be the natural projections. → → 

Theorem 13. L = Dψ∗ ◦ eF ◦ Dφ∗. 

Proof. (Exercise) 

Corollary 10. L is an isomorphism φ, ψ are surjective and F determines a nondegenerate pairing 
Ker φ × Ker ψ → R. 

⇔ 

Therefore, an orthogonal map V ⊕ V ∗ → W ⊕ W ∗ can be viewed as a subspace M ⊂ V × W,F ∈ 
�2 

M∗. 

16.2 T -duality 

The basic idea of T -duality is as follows: let S1 P π B be a principal S1 bundle, i.e. a spacetime with → →
geometry, with an invariant 3-form flux H ∈ Ω3 (P )S1 

and an integral [H] ∈ H3(P, Z), i.e. coming from a cl

gerbe with connection. Then we are going to produce a new ”dual” spacetime with ”isomorphic quantized 
field theory” (in this case, a sigma model). Specifically, let P̃ be a new S1-bundle over B so that 
c1(P̃ ) = π H ∈ H3( ˜ π H̃ = c1(P ). More specifically, choose a (H) ∈ H2(B, Z), and choose ˜ P ,Z) s.t. ˜∗ ∗ 

connection θ ∈ Ω1(P ) (i.e. L∂θ θ = 0, i∂θ = 1/2π) so dθ = F ∈ Ω2(B) is integral and [F ] = c1(P ). Then 
H = F̃ ∧ θ + h for some F̃ ∈ Ω2(B) integral and H ∈ Ω3(B). Now, [ F̃ ] ∈ H2(B, Z) defines a new principal 
S1-bundle P̃ . Choose a connection θ̃ on P̃ so that dθ̃ = F̃ . Then define H̃ = F ∧ θ̃+ h, so tat 

� 
H̃ = F and 

H = F̃ . 
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Example. Let S1 × S2 → S2 be the trivial S1-bundle, with H = v1 ∧ v2. Then v2 = 
S1 H = c1(S3 → S2), 

so the T -dual is the pair S3 , 0. Our original space has trivial topology and nontrivial flux, while the new 
space has nontrivial topology and trivial flux. 

Remark. In physics, T -dual spaces have the same quantum physics, hence the same D-branes and twisted 
K-theory. 

Theorem 14 (BHM). We have an isomorphism K∗ = K∗+1(P̃ ).H (P ) ∼
H̃

Next, let P ×B P̃ = {(p, p̃)|π(p) = π̃(p̃)} ⊂ P × P̃ be the correspondence space, φ, ψ the two projections. 
Then φ∗H − ψ∗H̃ = F̃ ∧ θ − F ∧ θ̃ = −d(φ∗θ ∧ ψ∗θ̃). 

Definition 23. A T -duality between S1-bundles (P,H) and ( ˜ H) over B is a 2-form P , ˜

F ∈ Ω2(P ×B P̃ )S1 ×S1 
s.t. φ∗H − ψ∗H̃ = dF and F deterines a nondegenerate pairing 

Ker φ∗ × Ker ψ∗ → R. 

In fact, T -duality can be expressed, therefore, as an orthogonal isomorphism 

P,F ) (T ̃(Tp ⊕ Tp 
∗,H)/S1 → L(P ×B ˜

P ⊕ T
P 
∗ 
˜ , H̃)/S1 (127) 

though of as bundles over B (or just S1-invariant sections on P, P̃ ). This map sends H-twisted bracket to 
H̃-twisted bracket, via 

Ω∗(P )S1 

� ρ �→ τ(ρ) = ψ F ∧ φ∗ρ = e F ∧ φ∗ρ ∈ Ω∗(P̃ )S1 

(128)∗e 
S̃1 

Since d(eF ρ) = eF (dρ + (H − H̃)ρ), we find that d ̃ (eF ρ) = eF dH ρ and τ(dH ρ) = d ̃ τ(ρ) as desired. H H 

( ˜Overall, a T -duality F : (P,H) P , H̃) implies an isomorphism 
˜(Tp ⊕ Tp 

∗,H)/S1 → L(P ×B P,F ) (T 
→ 

P̃ ⊕ T ∗ 
˜ , H̃)/S1 as Courant algebroid, and thus any S1-invariant 
P 

generalized structure may be transported from (P,H) to ( ˜ H).P , ˜

Example. 1. TP 
∗ ⊂ (Tp ⊕ Tp 

∗,H) is a Dirac structure = ⇒ T -dual is 

τ(ξ + θ) = ξ − ∂̃θ = T ∗B + �∂θ̃� = Δ ⊕ Ann Δ (129) 

for δ = �∂θ̃� 

2. The induced map on twisted cohomology H∗ (P ) � H∗+1(P̃ ) is an isomorphism. H H̃

3. Where does τ take the subspace C+ = Γg+b ⊂ T ∗ ⊕ T ? In TP = TB ⊕ 1, decompose

g = g0θ � θ + g1 � θ + g2, b = b1 ∧ θ + b2 for gi, bi basic. Then


C+ = Γg+b = �x + f∂θ + (ixg2 + fg1 + ixb2 − fb1) + (g1(x) + fg0 + b1(x))θ� (130) 

which is mapped via τ to 

Γg̃+b̃ = �x + (g1(x) + fg0 + b1(x))∂θ̃ + (ixg1 + fg1 + ixb2 − fb1) + fθ̃� (131) 

where 

g̃ = g
1 
0 
θ̃ � θ̃ − g

b1
0 
� θ̃ + g2 + g

1 
0 
(b1 � b1 − g1 � g1) (132)

b̃ = −g1 θ̃ + b2 + g1∧b1 
g0 
∧ g0 

These are called ”Buscher rules”. 

4. Elliptic Curves: 
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