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3 Lecture 3 (Notes: J. Bernstein) 

3.1 Almost Complex Structure 

Let J ∈ C∞(End(T )) be such that J2 = −1. Such a J is called an almost complex structure and makes the 
real tangent bundle into a complex vector bundle via declaring iv = J(v). In particular dim RM = 2n. This 
also tells us that the structure group of the tangent bundle reduces from Gl(2n, R) to Gl(n, C). Thus T is 
an associated bundle to a principal Gl(n, C) bundle. In particular we have map on the cohomology, 

H2i(M, Z) H2i(M, Z/2Z)→ 

c(T, J) �→ w(T ) 

Where c(T, J) are the Chern classes of T (with complex structure given by J) and w(T ) are the Stiefel-
Whitney classes. Here the map is reduction mod 2. In particular w2i+1 = 0 and c1 �→ w2, the later fact 
implies that M is Spinc . 

Recall that the Pontryagin classes of a vector bundle are pi ∈ H4i such that pi(E) = (−1)ic2i(E ⊗C). We 
study pi(T ) = (−1)ic2i(T ⊗C). Since the eigenvalues of J : T → T are ±i we have the natural decomposition 

T ⊗ C = (Ker (J − i)) ⊕ (Ker (J + i)) = T1,0 ⊕ T0,1 

Here T1,0 and T0,1 =are complex subbundles of T ⊗ C and on has the identifications (T1,0, i) ∼ (T, J) and 
(T0,1, i) ∼= (T, −J). Hence if we choose a hermitian metric h on T we get a non degenerate pairing, 

T1,0 × T0,1 → C 

and hence T1,0 
∼ We now compute = (T0,1)∗. 

(−1)k pk(T ) = c2k(T1,0 ⊕ T0,1) = ci(T1,0) ∪ c2k−i(T0,1) = ( ci(T1,0)) ∪ ( cj (T0,1) 
k k k i i j 

where the last equality comes from rearranging the sum. Now we have ci(T0,1) = (−1)ici(T1,0) and since we 
can identity T1,0 with (T, J) we have 

(−1)k pk(T ) = ( ci(T, J)) ∪ ( (−1)j cj (T, J)) 
k i j 

Thus the existence of an almost complex structure implies that one can find classes ci ∈ H2i(M, Z) that

when taken mod 2 give the Stiefel-Whitney class and that satisfy the above Pontryagin relation.


Problem. Show that S4k does not admit an almost complex structure.


Remark. Topological obstructions to the existence of an almost complex structure in general are not known.


3.2 Hermitian Structure 

Definition 10. A hermitian structure or a real vector space V consists of a triple 

• J an almost complex structure 

• ω : V → V ∗ ω symplectic (i.e. ω∗ = −ω) 

g : V V ∗ g a metric (i.e. g∗ = g and if we write x �→ g(x, ) then g(x, x) > 0 for x = 0) • → · �

with the compatibility 
g J = ω◦ 
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Now pick (J, g) this determines a hermitian structure if and only if 

−(gJ) = (gJ)∗ = J∗g∗ = J∗g 

. On the other hand (J, ω) determines a hermitian structure if and only if 

−(ωJ) = (ωJ−1)∗ = −J∗ω∗ = J∗ω 

that is if and only if J∗ω + ωJ = 0. Then we have (J∗ω + ωJ)(v)(w) = ω(Jx, y) + ω(x, Jy) = 0 which is 
equivalent to ω of type (1,1). We get three structure groups 

g �→ O(V, g) = {A : A∗gA = g}
ω �→ Sp(V, ω) = {A∗ωA = ω}
J �→ Gl(V, J) = {A : AJ = JA} 

Now if we form h = g + iω we obtain a hermitian metric on V . And we have structure group 

Stab(h) = U(V, h) = O(v, h) ∩ Sp(V, ω) = Gl(V, J) ∩ O(V, g) = Sp(V, ω) ∩ Gl(V, J) 

we note U(V, h) is the maximal compact subgroup of Gl(V, J). 

Problem. 1. Show Explicitly that given J one can always find a compatible ω (or g) 
2. Show similarly that givne ω can find compatible g. 

3.3 Integrability of J 

Since we have a Lie bracket on T we can tensor it with C and obtain a Lie bracket on T ⊗ C. The since 
T ⊗ C = T1,0 ⊕ T0,1, integrability conditions are thus that the complex distribution T1,0 is involutive i.e. 
[T1,0, T1,0] ⊆ T1,0. How far is this geometry from usual complex structure on Cn? Idea is if one can form MC 

the complexification of M (think of RP n ⊂ CP n or Rn ⊂ Cn, indeed if M is real analytic it is always possible 
to do this. Then MC has two transverse foliations by the integrabrility condition (from T1,0 and T0,1). Say 

i 1 2 nfunctions z : MC C cut out the leaves of T1,0 (i.e. the leaves are given by z = z = . . . = z = c).→ 
1 nThen when one restricts the zii to a neighborhood U ⊆ M , obtains maps z , . . . , z : U → C such that 

< dz1, . . . , dzn >= T1
∗ 
,0 = Ann(T0,1. That is one obtains a holomorphic coordinate chart. Moreover in this 

chart one has � ∂ ∂ 
J = i(dzk ⊗ 

∂zk 
+ dz k ⊗ 

∂z
)

k 
k 

Remark. This is similar to the Darboux theorem of symplectic geometry 

More generally we have 

Theorem 4. (Newlander-Nirenberg) If M is a smooth manifold with smooth almost complex structure J 
that is integrable then M is actually complex. 

Note. This was most recently treated by Malgrange. 

Now T1,0 closed under [, ] happens if and only if for X ∈ T,X − iJX ∈ T1,0 one has [X − iJX, Y − iJY ] = 
Z − iJZ. That is [X,Y ] − [JX, JY ] + J [X, JY ] + J [JX, Y ] = 0 

Definition 11. We define the Nijenhuis tensor as NJ (X,Y ) = [X,Y ] − [JX, JY ] + J [X, JY ] + J [JX, Y ] 

Problem. Show that NJ is a tensor in C∞( 
�2 

T ∗ ⊗ T ). 

Thus one has J integrable if and only if NJ = 0. 
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Remark. NJ =0 is the analog of dω ∈ C∞( 
�3 

T ∗) 

Now if we view J ∈ End(T ) = Ω1(T ) = ξi then J acts on differential forms, ρ ∈ Ω·(M) by � � ⊗ νi 

ıJ (ρ) = ξi ∧ ıvi ρ = (eξi ıvi )ρ. And one computes · 

ıJ (α ∧ β) = ıJ (α) ∧ β + (−1)αα ∧ ıJ β 

thus ıJ ∈ Der0(Ω·(M)) and we may form LJ = [ıJ , d] ∈ Der1(Ω·(M)). 

Note. LJ is denoted dc 

Definition 12. We define the Nijenhuis bracket [, ] : Ωk × Ωl → Ωk+l by L[J,K] = [LJ , LK ] 

One checks [LJ , LJ ] = LNJ hence NJ = [J, J ]. 

3.4 Forms on a Complex Manifold 

In a manner similar with our treatment of foliations, we wish to express integrability in terms of differentiable 
forms. Let T0,1 (or T1,0) be closed under the complexified Lie bracket. Since Ann T0,1 = T1

∗ 
,0 =< θ1, . . . , θn > 

(Ann T1,0 = T1
∗ 
,0), Ω = θ1 ∧ . . . θn is a generator for det T1

∗ 
,0 = K. Where here K is a complex line 

bundle. The condition for integrability is then dΩn,0 = ξ0,1 ∧ Ωn,0 for some ξ. Taking d again one obtains 
0 = dξ ∧ Ωn,0 − ξ ∧ dΩ = dξ ∧ Ω, hence ∂ξ = 0. We call K = n 

T ∗ the canonical bundle.1,0 

Note. This definition is deserved since K ⊂ T ∗ ⊗C and T0,1 = AnnK = {X ıX Ω = 0}, i.e. we can recover 
the complex structure from K 

More fully, there is a decomposition of forms 

· p q� � � �� 
T ∗ ⊗ C = T1

∗ 
,0 T0

∗ 
,1 

p,q 

Ω· = Ωp,q(M) 
p,q 

that is a Z × Z grading. 
Since dΩn,0 = ξ ∧ Ω we have integrability if and only if d = ∂ + ∂, where here ∂ = πp,q+1 ◦ d and 

∂ = πp+1,q ◦ d. 

Problem. Show that without integrability 

d = ∂ + ∂ + dN 

where NJ ∈ ∧2T ∗ ⊗ T and dN = ıNJ . Also determine the p, q decomposition of dN . 

3.5 Dolbeault Cohomology 

Assuming NJ = 0 one has ∂2 = ∂ 
2 

= ∂∂ + ∂∂ = 0. Thus one gets a complex 

∂ : Ωp,q(M) Ωp,q+1(M).→ 

The cohomology of this complex is called the Dolbeault cohomology and is denoted 

Ker ∂|Ωp,q 

= H
∂

p,q (M ). 
Im ∂|Ωp,q−1 
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This is s Z x 2 g&ed ring. The symbol dB can be de&mined from the oomputation p, rnp] = qi. N m  
givenarealform~f SF*-(0) thtm 

i e & p t i c , s i n c e ~ = ~ ~ * ~ + ( ~ ~  = $ ~ o + ~ ( w ~ m d )  andsoP.'#b. Aeneedirn~<monMeompad.  
Maw suppose E + M is a compltx vector bundle, huw dcw pone make E srrmpstible with the corn* 

structure J on M? 

The aohorn(~1~gy of this conplm is called Do& Jt whomulogkt with oahm in.E and iS h a t e d  I$E (M, E). 
Elliptic theory t& us tbat M compact impzis HsB(M, E) is finite dimensional. We note that Blw.o is a 
holomwrphic structure an K and henoe K is a halomarpbic he bundle. 


