3 Lecture 3 (Notes: J. Bernstein)

3.1 Almost Complex Structure

Let J € C>°(End(T)) be such that J? = —1. Such a J is called an almost complex structure and makes the
real tangent bundle into a complex vector bundle via declaring iv = J(v). In particular dim g M = 2n. This
also tells us that the structure group of the tangent bundle reduces from Gi(2n,R) to Gl(n,C). Thus T is
an associated bundle to a principal Gi(n,C) bundle. In particular we have map on the cohomology,

H*(M,Z) — H*(M,Z/27)
o(T,J) — w(T)

Where ¢(T,J) are the Chern classes of T (with complex structure given by J) and w(T) are the Stiefel-
Whitney classes. Here the map is reduction mod 2. In particular wg;+1 = 0 and ¢; — we, the later fact
implies that M is Spin®.

Recall that the Pontryagin classes of a vector bundle are p; € H* such that p;(E) = (—1)co;(E®C). We
study p;(T) = (—1)%c2;(T®C). Since the eigenvalues of J : T — T are +i we have the natural decomposition

T®C=(Ker (J—1)® (Ker (J+14)=T10®To1

Here T1 and Tp,1 are complex subbundles of T'® C and on has the identifications (T4 ,4) = (T, J) and
(To1,%) = (T, —J). Hence if we choose a hermitian metric h on T' we get a non degenerate pairing,

TioxTp1 —C

and hence T o = (Tp1)*. We now compute

Z(—l)kpk(T) = Zc2k(T1,0 ®©Toq) = Z Zci(Tl,O) U cop—i(To,1) = (Z ci(Ti0)) U (Z c;j(To,1)
k ki j

k
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where the last equality comes from rearranging the sum. Now we have ¢;(Tp1) = (—1)c;(T1,0) and since we
can identity 77 o with (7, J) we have

Y D (T = Qe ) U QY (~1) (T, )
K i i

Thus the existence of an almost complex structure implies that one can find classes ¢; € H?(M,Z) that
when taken mod 2 give the Stiefel-Whitney class and that satisfy the above Pontryagin relation.

Problem. Show that S** does not admit an almost complex structure.

Remark. Topological obstructions to the existence of an almost complex structure in general are not known.

3.2 Hermitian Structure
Definition 10. A hermitian structure or a real vector space V' consists of a triple
e J an almost complex structure
o w:V = V*w symplectic (i.e. w* =—-w)
e g:V = V* g ametric (i.e. g* =g and if we write x — g(x,-) then g(z,z) > 0 for x #0)

with the compatibility
goJ=w



Now pick (J, g) this determines a hermitian structure if and only if
—(9))=(gJ)" =Tg" =J"yg
. On the other hand (J,w) determines a hermitian structure if and only if
—(wJ) = (WY = —Jw = J'w
that is if and only if J*w + wJ = 0. Then we have (J*w + wJ)(v)(w) = w(Jz,y) + w(z, Jy) = 0 which is
equivalent to w of type (1,1). We get three structure groups
g — OV,g)={A:A"gA =g}
w — Sp(V,w) ={A"wA = w}
J — GUV,J)={A:AJ=JA}
Now if we form h = g + iw we obtain a hermitian metric on V. And we have structure group
Stab(h) = U(V,h) = O(v,h) N Sp(V,w) = GU(V, J) N O(V,g) = Sp(V,w) NGI(V, J)
we note U(V, h) is the maximal compact subgroup of GI(V, J).

Problem. 1. Show Explicitly that given J one can always find a compatible w (or g)
2. Show similarly that givne w can find compatible g.

3.3 Integrability of J

Since we have a Lie bracket on T we can tensor it with C and obtain a Lie bracket on T'® C. The since
T®C = Ti0® Tp,, integrability conditions are thus that the complex distribution 71 is involutive i.e.
[T1,0,T1,0) C T1,0. How far is this geometry from usual complex structure on C"? Idea is if one can form M ¢
the complexification of M (think of RP™ C CP"™ or R™ C C", indeed if M is real analytic it is always possible
to do this. Then M has two transverse foliations by the integrabrility condition (from Ty and Tp1). Say

functions z* : M© — C cut out the leaves of Th o (i.e. the leaves are given by 2! = 22 = ... = 2" = ¢).
Then when one restricts the z% to a neighborhood U C M, obtains maps z!,...,2z" : U — C such that
<dz',...,dz" >= 1Yo = Ann(Tp,1. That is one obtains a holomorphic coordinate chart. Moreover in this

chart one has 5
Remark. This is similar to the Darboux theorem of symplectic geometry

More generally we have

Theorem 4. (Newlander-Nirenberg) If M is a smooth manifold with smooth almost complex structure J
that s integrable then M is actually complex.

Note. This was most recently treated by Malgrange.

Now T o closed under [, ] happens if and only if for X € T, X —iJX € T} g one has [X —iJX,Y —iJY]| =
Z —iJZ. That is [X,Y] — [JX,JY ]|+ J[X,JY]+ J[JX,Y] =0

Definition 11. We define the Nijenhuis tensor as Ny(X,Y) = [X,Y] - [JX,JY ]+ J[X,JY] + J[JX,Y]
Problem. Show that N is a tensor in C®(A\*T* @ T).

Thus one has J integrable if and only if N; = 0.



Remark. N;=0 is the analog of dw € C=(\*T*)

Now if we view J € End(T) = QYT) = Y. ¢ @ v; then J acts on differential forms, p € Q (M) by
17(p) = D& Ny,p = > (€gi - 15,,)p. And one computes

wanpB)=1(a) A+ (1)@ A0
thus 1 € Der’(Q'(M)) and we may form Lj = [1;,d] € Der' (' (M)).
Note. L; is denoted d°
Definition 12. We define the Nijenhuis bracket [,]: Q¥ x Q' — Q¥+ by Lj; 5y = [L;, L]
One checks [Lj, Lj] = Ly, hence Ny = [J, J].

3.4 Forms on a Complex Manifold

In a manner similar with our treatment of foliations, we wish to express integrability in terms of differentiable
forms. Let Tp 1 (or T1,0) be closed under the complexified Lie bracket. Since Ann Tpq = Ty =< o, ....0m >
(Amn Ty = T7p), @ = 0" A...0" is a generator for det Ty, = K. Where here K is a complex line
bundle. The condition for integrability is then dQ™°? = ¢%1 A Q™0 for some £. Taking d again one obtains
0=déAQW0 —ENdQ =dENQ, hence IE = 0. We call K = \" TYy the canonical bundle.

Note. This definition is deserved since K C AT*®C and Ty 1 = AnnK = {X 1xQ = 0}, i.e. we can recover
the complex structure from K

More fully, there is a decomposition of forms

Aroc-@ (Ar@A. )

b,q
o =ari(m)
p,q

that is a Z x Z grading. ~
~ Since dQ™0 = £ A Q we have integrability if and only if d = d + 0, where here d = 7, 441 o d and
0 ="Tpt1,40d.

Problem. Show that without integrability
d=0+09+d"

where N; € A2T* @ T and d¥ = 1y,. Also determine the p, ¢ decomposition of d*.

3.5 Dolbeault Cohomology
Assuming Ny = 0 one has 9% = 52 = 00 + 00 = 0. Thus one gets a complex
9 : QPY(M) — QP (M),
The cohomology of this complex is called the Dolbeault cohomology and is denoted

Ker 5|Qp,q

tOlors _ praqyy),
Im 3|Qp,q71
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This is a Z x Z graded ring. The symbol of @ can be determined from the computation [9, m;] = ez - Now
given a real form £ € T — {0} then

p:q P+l
/\T' — /\ i
p — EMAp

is elliptic, since § = £10 4 €01 = g1.0 L €0T (a5 £ real) and so €% # 0. Hence dim HZ% < 00 on M compact.
Now suppose E — M is a complex vector bundle, how does pone make E compatible with the complex
structure J on M?

Definition 13. E — M a complex vector bundle is a holomorphic if there exists a connection O : C®(E) —
C=(T3, ® E) which is flat (i.e. 95 = 0).

This gives us a complex
C¥(Tg,®E)— ... = QM(E) =C®(A"MT* R E) — ...

The cohomology of this complex is called Dolbeault cohomology with values in E and is denoted HgE(M ,E).

Elliptic theory tells us that M compact implies HgE(M, E) is finite dimensional. We note that §|Q..,o is a
holomorphic structure on K and hence K is a holomorphic line bundle.

Problem. Find explicitly the 9z operator on E = T}
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