5 Lecture 5 (Notes: C. Kottke)

5.1 Spinors
We have a natural action of V@ V* on A'V*. Indeed, if X +£ € V@ V*and pe A'V* let

(X+&-p=ixp+ENp.
Then

(X+8*p = ix(ixp+ENp) +EA(ixp+EAP)
= (ix&)p—&Nixp+ENixp
(X+&X+8p

where (,) is the natural symmetric bilinear form on V & V*:

(X +6Y ) = L (€(¥) +n(X))

Thus we have an action of v € V & V* with v?p = (v,v)p. This is the defining relation for the Clifford
Algebra CL(V & V*).
For a general vector space FE, CL(FE,(,)) is defined by

CL(E, () = R E/ (v & v — (v,0)1)
That is, CL(E, {,)) is the quotient of the graded tensor product of E by the free abelian group generated by
all elements of the form v ® v — (v,v)1 for v € E. Note in particular that if (,) = 0 then CL(E, (,)) = \'E.

We therefore have representation CL(V @ V*) — End(A'V*) = End(R?") where n = dimV. This is
called the “spin” representation for CL(V & V*).

Choose an orthonormal basis for V @& V*, ie. {e; £e!,... e, & e"}. The clifford algebra has a natural
volume element in terms of this basis given by

n(n—1)

w=(=1)"2 (es—e') (e, —e")(er+e) - (en+em).
Problem. Show w! = 1, we; = —ejw,we’ = —e'w, and w-1 = 1, considering 1 as the element in /\OV* acted
on by the clifford algebra.
The eigenspace of w is naturally split, and we have
ST =Ker(w—1) = A\"V*
S~ =Ker(w+1) = \°MV*
The e are known as “creation operators” and the e; as “annihilation operators”. We define the “spinors” S
b S=ANV*=8T® S~
Here is another view. V is naturally embedded in V & V*, so we have
CLV)=AV CCLVaV*

since (V,V) = 0. Note in particular that detV C CL(V @ V*), where detV is generated by e;---e, in
terms of our basis elements. detV is a minimal ideal in CL(V @& V*), so CL(V & V*)-detV € CL(V & V*).
Elements of CL(V @ V*) - det V are generated by elements which look like
(1,e',e%e,...) er1---eq
N————— N——
noe; = fedetV
For x € CL(V @ V*) and p € S, the action x - p satisfies xpf = (z - p)f.

Problem. Show that this action coincides with the Cartan action.
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5.2 The Spin Group
The spin group Spin(V & V*) C CL(V @ V*) is defined by

Spin(Vae V") ={vy v :v; EVBV* (v;,v;) = £,r even.}
Spin(V @ V*) is a double cover of the special orthogonal group SO(V @ V*); there is a map
p:Spin(V o V*) 2L S0V @ V)

where the action p(x) - v = zvz~! in CL(V @ V*).
The adjoint action in the Lie algebra so(V @ V*) is given by

dpy v — [z,0]
where [,] is the commutator in CL(V & V*), so
so(V @ V*) =span{[z,y] 2,y e VO VI = N2 (V @ V*).
Recall that A*(V & V*) = A’V* & A’V @ End(V), so a generic element in A\*(V & V*) looks like
B+ B+ Ae NV e A’V & End(V)

In terms of the basis, say B = B;je' Ael, f7e;Aej, and A = Agei®ej. In CL(V &V*), these become B;je'e’,
Beje; and %Ai (eje’ — e'ej), respectively. Consider the action of each type of element on the spinors.

(Bije'e’) - p=Bije' Nes Ap=—BAp
(8Yejei) - p=Bicyic,p = igp
Lo, i i Loigi (o i n L yisi J i 1 .
§Ai(eje —e'ej) ~p:§Ai(zej(e Ap)—e /\zejp):(iAiéj)pfAie Nejp = §TrA p—Ap
Given B € /\2V*, recall the B field transform e~?. This acts on the spinors via
5 1
e 'p:p+B/\p+gBAB/\p+-~

Note that there are only finitely many terms in the above.
Similarly, given 8 € /\2V7 we have

1
e’ p=p+igp+ Sigigp+ -
For A € End(V), e* = g € GLT(V), we have

g-p=1/det(g) (") - p

so that, as a GLT (V) representation, S = A\'V* @ (detV)/2.
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5.3 A Bilinear Pairing on Spinors
Let p,¢ € A'V* and consider the reversal map a: A'V* — A'V* where
G N = E N NG

Define
(p,®) = [ap) A ¢n € detV™

where n = dim V, and the subscript n on the bracket indicates that we take only the degree n parts of the
resulting form.

Proposition 3. Forz € CL(Va@V*), (x-p,$) = (¢, a(x) - ¢)
Proof. Recall that (- p)f = xpf and

(p,9) = ip(p,®)f
£ (

so (- p,¢) = a(zpf)of = alpfla(z)of = (p,a(x)¢). O
Corollary 2. We have
(v-p,v-8) = (pa(v)v-¢) = (v,v)(p, P)
Also, for g € Spin(V & V™),
(9-p,9-9)=+£1(p,9)

Example. Suppose n =4, and p, ¢ € A\°'V*, so that
p = po+ p2+ps

and similarly for ¢, where the subscripts indicate forms of degree 0, 2, and 4. Then «a(p) = po — p2 + ps and

(0, ) = [(po — p2+ pa) A (¢o + 2 + ¢4)], = pPoda + dopa — p2 A b2

Ifn=4and p,¢ € /\OdV*, then

(p, @) = [(p1 = p3) A (61 + ¢3)], = p1 A 3 — p3s A .

n(n—1)

Proposition 4. In general, (p,¢) =(—1)" =z (¢, p)
Problem. e What is the signature of (,) when symmetric?
e Show that (,) is non-degenerate on S*.

e Show that in dimension 4, the 16 dimensional space A\ V* has a non degenerate symmetric form
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5.4 Pure Spinors
Let ¢ € A'V* be any nonzero spinor, and define the null space of ¢ as
Ly={X+EeVaV':(X+£)-¢6=0}.
It is clear then that L, depends equivariantly on ¢ under the spin representation. If
p—=g-¢, geSpin(Vav®)

then
Ly — p(g)Lg

where p : Spin(V @ V*) — so(V @ V™) as before. The key property of the null space is that it is isotropic.
Indeed, if z,y € Ly we have
2z, y)¢ = (ay +yz)¢ = 0.
Thus Ly C Lj;.
If Ly = Lé—, that is, if Ly is maximal, then ¢ is called “pure”. We have therefore that ¢ is pure if and
only if Ly is Dirac.

Example. o Take¢=¢'A---Ae”. Then L, = V",

e Take 1 € A\°V*. Then L; = V. For B € A’V*, then e ®-1=1-B+1/2BAB+---. So
Lea = BB(Ll) = BB(V) = FB.

e For € V*, 0 is pure since Ly = {X +£:ix0+EA0 =0} = Ker 8@ (#) which is Dirac; indeed this is
what we called L(Ker 6,0).

e Similarly, considering e?6, we have L.sy = L(Ker 6, f*B).

e Given a Dirac structure L(E,¢€), choose 6y,...,0; such that (6,...,6;) = Ann E. Choose B € /\21/'
such that f*B =e¢. Then ¢ = e 26; A--- A By is pure and Ly = L(E,€).

Problem. e Show Ly N Ly = {0} < (¢,¢’) #0.
o Let dim V =4, and p = pp + p2 + ps # 0. Show that p is pure iff 2pops = p2 A pa.
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