7 Lecture 7 (Notes: N. Rosenblyum)

7.1 Exact Courant Algebroids
Recall that a Courant algebroid is given by the diagram of bundles

T

NS

M

where 7 is called the “anchor” along with a bracket [, ] and a nondegenerate bilinear form ( , ) such that
e 7[a,b] = [ra, wb]
e The Jacobi identity is zero

[a, fb] = fla, b] + ((ma) f)b

e [a,b] = ir*d(a,a)

malb, ¢) = ([a, b], ¢) + (b, [a, ])

A Courant algebroid is exact if the sequence

s s

0 T* E T 0

is exact (note that 7o 7* is always 0).
Remarks: For an exact Courant algebroid, we have:

Continued on next page...
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1. The inclusion T* C E is automatically isotropic because for £,n € T*,
(n&,m"n) = &(v*mn) =0
since (7*¢,a) = &(7a).

2. The bracket [, |

7+ =0: for s,t € C®(E), f € C=(M),
D =n*d: C®(M) — C™(E)
Now,
([s,Df),t) = ws(Df,t) — (Df, [s,t]) = ws(nt(f)) — n[s,1)(f) = wt(zs(f)) = (D(Df,s), f)

Thus, [s, Df] = D(s, Df). We also have, [Df,s] + [s,Df] = D(Df, s) and therefore [Df, s] = 0.
We need to show that [fdz’, gdz?] = 0. But have [dz*,dz’] = 0 and

[a, fb] = fla,b] + ((wa) f)b, [ga,b] = gla,b] — ((wb)g)a + 2(a, b)dg.

7.2 Severa’s Classification of Exact Courant Algebroids
We can choose an isotropic splitting

O—T"———~—F_ —_——~—T—>0

*
S

ie. (sX,sY)=0forall XY € T. We then have F = T @ T* and we can transport the Courant structure
toT®T*: for X, Y € T and &,n € T,

(X +&4Y +n) = (sX + 77 sY +77n) = {(msY) + n(rsX) = (V) +n(X)
since (sX,sY) = 0. Also,

(X +&Y +n]=[sX+7%EsY + 7" = [sX,sY] + [sX,n%n] + [, sY]

We have that the second term is given by
w[s X, m*n] = [wsX, 7] =0
and therefore, [sX, 7*n] € Q. Further,
[sX, 7 n](Z) = ([sX, 7" n], sZ) = X (7", sZ) — (7"n, [s X, sZ]) = Xn(Z) = n([X, Z]) = izLxn

and so [sX,7*n] = Lxn.
Now, the third term is given by

(77, sY],52) = (=[sY,7"E] + D(sY,7"E), s2Z) = —(Ly§)(Z) + izdiy{ = (—iyd§)(Z)
and so [7*€, sY] = —iydE.

For the first term, we have no reason to believe that [sX, sY] = [X,Y] We do have that
m[sX,sY] = [X,Y]pie. Now, let H(X,Y) = s*[sX, sY]. We then have,
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1. H is C*°-linear and skew in X,Y":
H(X, fY) = fs"[sX,sY]+ s"(X(f)sY) = fs*[sX,sY], and

H(fX,Y)=s"[fsX,sY]|=fH(X,Y) —s*(Yf)sX) + 2(sX,sY)df = fH(X,Y). Furthermore,
[sX,sY] + [sY,sX] = n*d(sX, sY).

2. H(X,Y)(Z) is totally symmetic in X,Y, Z:

H(X,Y)(Z) = ([sX,sY],sZ)g = X(sY,sZ) — (sY,[sX,sZ])

So, we have [sX,sY] = [X,Y] —iyixH for H € Q3(M).
Problem. Show that [[a,b], c] = [a, [b, c]] — [b, [a, c]] + trcinpiradH and so Jac = 0 if and only if dH = 0.

Thus, we have that the only parameter specifying the Courant bracket is a closed three form H € Q3(M).
We will see that when [H]/2m € H3(M,Z), E is associated to an S!-gerbe.

Now, let’s consider how H changes when we change the splitting. Suppose that we have two section
$1,82 : T — E. We then have that w(s; — s2) = 0. So consider B = s; — s9 : T — T*. In the s; splitting,
we have for x € T, sa(x) = (x + (s2 — s1)x). Since the s; are isotropic splittings, we have that

(s2 — s1)(z)(z) = 0. Thus we have, B € C>(A%*T™*).

Now, in the s; splitting we have,

[X+’izB,Y+in]H = [X, Y]+inyB—iydixB+iyixH = [X, Y]+’i[X7y]B—inyB+iydixB+iyixH =

In particular, in the sy splitting H changes by dB. Thus, we have that [H] € H3(M,R) classifies the exact
Courant algebroid up to isomorphis.
The above bracket is also a derived bracket. Before, we had that

[a” b]C P = [[dv (L], b]SD

Now, replace d with dy = d + HA. We clearly have that d%;, = (dH)A = 0 since dH = 0. Note that dy is
not of degree one and is not a derivation but it is odd. The cohomology of dy is called H-twisted deRham
cohomology. In simple cases (e.g. when M is formal in the sense of rational homotopy theory,), we have

* ev/o ev/od
H* (H (M), eq)) = Hyy/ (M)

where ey = HA.

Now, [a,b]m - ¢ = [[d#,a],b]e. Indeed, for B € Q2, we have ¢ +— eBp and

e B(d+ HN)eP = e PdeP + e BHeP = dy ap, and so eBle B eB.ly = [, |grap In particular, if

B € 921, then P is a symmetry of the Courant bracket.

This phenomena is somewhat unusual because for the ordinary Lie bracket, the only symmetries are given
by diffeomorphisms of the underlying manifold. More specifically, a symmetry of the Lie bracket on C°°(T")
is a diagram

P
_—

T T
L,
M—M

such that ¢ is a diffeomorphism and [®, ®] = [, -].



Claim 1. Sym[, |ric = {(¢«,9), ¢ € Dif f(M)}.

Proof. Given (®,¢) € Sym|, ]Lie, consider G : ®¢; L. Then G covers the identity map on M and we have
fGIX,) Y] - (YIGX =G[fX,Y] = fIGX,GY] — (GY)fGX and so Y f = (GY)(f) for all Y, f and so

G=1. O
Let’s now consider the question of what all the symmetries of the Courant bracket [, |¢ are. Once again,
we have a diagram
FE—2.F
|, |
M—M
where E ~ T & T™* such that
L ¢*(®, @) = ()
2. [®,P] = D, ]

3. Tod = ¢, om.
Suppose that ¢ € Dif f(M). Then on T & T*, ¢, is given by

o= (" (o)

and so we have ¢.(X + &) = ¢. X + (¢*) 1€ and

¢ [0 X + (97 0Y + () Ml = [X +EY +n)pen

since ¢ (i, vig.xH)(Z) = ig.zip.vie.xH = ¢*H(X,Y, Z). In particular, this does not give a symmetry
unless ¢o*H = H.

Now, consider a B-field transform. Since eZ[e™5- e B.]y = [-,-|g1ap, this is not a symmetry unless

dB = 0. Now we can combine these to generate the symmetries:

[x"-, pueP ] = 6ueP[, Jgemrran
and so ¢.eP € SymE iff H — ¢*H = dB. It turns out that these are all the symmetries.

Theorem 5. The above are all the symmetries of an exact Courant algebroid. In particular, we have a

short exact sequence
0— le — Sym(E) — Dif fig) — 0

where Dif fig) is the subgroup of diffeomorphisms of M preserving the cohomology class [H].
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