
� � � �

�������� 

� �
�������� 

7 Lecture 7 (Notes: N. Rosenblyum) 

7.1 Exact Courant Algebroids 

Recall that a Courant algebroid is given by the diagram of bundles 

π 
E T 

M 

where π is called the “anchor” along with a bracket [ , ] and a nondegenerate bilinear form � , � such that 

• π[a, b] = [πa, πb] 

• The Jacobi identity is zero 

• [a, fb] = f [a, b] + ((πa)f)b 

• [a, b] = 1 π∗d�a, a�2 

• πa�b, c� = �[a, b], c� + �b, [a, c]� 

A Courant algebroid is exact if the sequence 

π π∗ 

0 �� T ∗ �� E �� T �� 0 

is exact (note that π π∗ is always 0).◦
Remarks: For an exact Courant algebroid, we have: 
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1. The inclusion T ∗ ⊂ E is automatically isotropic because for ξ, η ∈ T ∗, 

�π∗ξ, π∗η� = ξ(π∗πη) = 0


since �π∗ξ, a� = ξ(πa).


2. The bracket [ , ]|T ∗ = 0: for s, t ∈ C∞(E), f ∈ C∞(M ), 

D = π∗d : C∞(M) → C∞(E)


Now,


�[s, Df ], t� = πs�Df, t� − �Df, [s, t]� = πs(πt(f)) − π[s, t](f) = πt(πs(f)) = �D�Df, s�, f� 

Thus, [s, Df ] = D�s, Df�. We also have, [Df, s] + [s, Df ] = D�Df, s� and therefore [Df, s] = 0. 

We need to show that [fdxi, gdxj ] = 0. But have [dxi, dxj ] = 0 and 

[a, fb] = f [a, b] + ((πa)f)b, [ga, b] = g[a, b] − ((πb)g)a + 2�a, b�dg. 

ˇ7.2 Severa’s Classification of Exact Courant Algebroids 

We can choose an isotropic splitting 

π∗ 
�� π ��

0 �� T ∗ �� E �� T �� 0 
s∗ s 

i.e. �sX, sY � = 0 for all X,Y ∈ T . We then have E ∼= T ⊕ T ∗ and we can transport the Courant structure 
to T ⊕ T ∗: for X,Y ∈ T and ξ, η ∈ T ∗, 

�X + ξ, Y + η� = �sX + π∗ξ, sY + π∗η� = ξ(πsY ) + η(πsX) = ξ(Y ) + η(X) 

since �sX, sY � = 0. Also, 

[X + ξ, Y + η] = [sX + π∗ξ, sY + π∗η] = [sX, sY ] + [sX, π∗η] + [π∗ξ, sY ] 

. 
We have that the second term is given by 

π[sX, π∗η] = [πsX, ππ∗η] = 0 

and therefore, [sX, π∗η] ∈ Ω1 . Further, 

[sX, π∗η](Z) = �[sX, π∗η], sZ� = X�π∗η, sZ� − �π∗η, [sX, sZ]� = Xη(Z) − η([X,Z]) = iZ LX η 

and so [sX, π∗η] = LX η. 
Now, the third term is given by 

�[π∗ξ, sY ], sZ� = �−[sY, π∗ξ] + D�sY, π∗ξ�, sZ� = −(LY ξ)(Z) + iZ diY ξ = (−iY dξ)(Z) 

and so [π∗ξ, sY ] = −iY dξ. 
For the first term, we have no reason to believe that [sX, sY ] = [X,Y ] We do have that 
π[sX, sY ] = [X,Y ]Lie. Now, let H(X,Y ) = s∗[sX, sY ]. We then have, 
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1. H is C∞-linear and skew in X,Y : 

H(X, fY ) = fs∗[sX, sY ] + s∗(X(f)sY ) = fs∗[sX, sY ], and 

H(fX, Y ) = s∗[fsX, sY ] = fH(X,Y ) − s∗((Y f)sX) + 2�sX, sY �df = fH(X,Y ). Furthermore, 

[sX, sY ] + [sY, sX] = π∗d�sX, sY �. 

2. H(X,Y )(Z) is totally symmetic in X,Y, Z: 

H(X,Y )(Z) = �[sX, sY ], sZ�E = X�sY, sZ� − �sY, [sX, sZ]� 

So, we have [sX, sY ] = [X,Y ] − iY iX H for H ∈ Ω3(M). 

Problem. Show that [[a, b], c] = [a, [b, c]] − [b, [a, c]] + iπciπbiπadH and so Jac = 0 if and only if dH = 0. 

Thus, we have that the only parameter specifying the Courant bracket is a closed three form H ∈ Ω3(M).

We will see that when [H]/2π ∈ H3(M, Z), E is associated to an S1-gerbe.

Now, let’s consider how H changes when we change the splitting. Suppose that we have two section

s1, s2 : T → E. We then have that π(s1 − s2) = 0. So consider B = s1 − s2 : T → T ∗. In the s1 splitting,

we have for x ∈ T , s2(x) = (x + (s2 − s1)x). Since the si are isotropic splittings, we have that

(s2 − s1)(x)(x) = 0. Thus we have, B ∈ C∞(Λ2T ∗).

Now, in the s1 splitting we have,


[X +ixB, Y +iY B]H = [X,Y ]+LX iY B −iY diX B+iY iX H = [X,Y ]+i[X,Y ]B −iY LX B +iY diX B +iY iX H = 

= [X,Y ] + i[X,Y ]B + iY iX (H + dB) 

In particular, in the s2 splitting H changes by dB. Thus, we have that [H] ∈ H3(M, R) classifies the exact 
Courant algebroid up to isomorphis. 
The above bracket is also a derived bracket. Before, we had that 

[a, b] ϕ = [[d, a], b]ϕ.C · 

Now, replace d with dH We clearly have that d2 = (dH)∧ = 0 since dH = 0. Note that dH is= d + H∧. H 
not of degree one and is not a derivation but it is odd. The cohomology of dH is called H-twisted deRham 
cohomology. In simple cases (e.g. when M is formal in the sense of rational homotopy theory,), we have 

H∗(Hev/od(M), e[H]) = Hev/od(M)dH 

where eH = H∧.

Now, [a, b]H ϕ = [[dH , a], b]ϕ. Indeed, for B ∈ Ω2, we have ϕ �→ eB ϕ and
· 
e−B (d + H∧)eB = e−B deB + e−B HeB = dH+dB , and so eB [e−B , eB ]H = [ , ]H+dB In particular, if· ·
B ∈ Ω2 

c l, then eB is a symmetry of the Courant bracket.

This phenomena is somewhat unusual because for the ordinary Lie bracket, the only symmetries are given

by diffeomorphisms of the underlying manifold. More specifically, a symmetry of the Lie bracket on C∞(T )

is a diagram


Φ 
T �� T 

�� φ ��
M �� M 

such that φ is a diffeomorphism and [Φ, Φ] = Φ[·, ].·
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Claim 1. Sym[ , ]Lie = {(φ∗, φ), φ ∈ Diff(M)}. 

Proof. Given (Φ, φ) ∈ Sym[ , ]Lie, consider G : Φφ−1 . Then G covers the identity map on M and we have∗ 
fG[X,Y ] − ((Y f)GX = G[fX, Y ] = f [GX,GY ] − (GY )fGX and so Y f = (GY )(f) for all Y, f and so 
G = 1. 

Let’s now consider the question of what all the symmetries of the Courant bracket [ , ] are. Once again,C 

we have a diagram 

E 
Φ �� E 

�� φ ��
M �� M 

where E � T ⊕ T ∗ such that 

1. φ∗�Φ·, Φ·� = �·, ·� 

2. [Φ·, Φ ] = Φ[·, ]· ·

3. π Φ = φ π.◦ ∗ ◦ 

Suppose that φ ∈ Diff(M). Then on T ⊕ T ∗, φ is given by∗ 

φ = 
φ∗ 

∗ (φ∗)−1 

and so we have φ (X + ξ) = φ∗X + (φ∗)−1ξ and∗

φ−1[φ∗X + (φ∗)−1ξ, φ∗Y + (φ∗)−1η]H = [X + ξ, Y + η]φ∗H∗ 

since φ−1(iφ∗Y iφ∗X H)(Z) = iφ∗Z iφ∗Y iφ∗ X H = φ∗H(X,Y, Z). In particular, this does not give a symmetry∗ 
unless φ∗H = H.

Now, consider a B-field transform. Since eB [e−B ·, e−B ·]H = [·, ·]H+dB , this is not a symmetry unless

dB = 0. Now we can combine these to generate the symmetries:


[φ∗e B , φ∗e 
B ] = φ∗e 

B [·, ]φ∗H+dB· · ·

and so φ B ∈ SymE iff H − φ∗H = dB. It turns out that these are all the symmetries.∗e

Theorem 5. The above are all the symmetries of an exact Courant algebroid. In particular, we have a 
short exact sequence 

0 → Ωcl 
2 → Sym(E) → Diff[H] → 0 

where Diff[H] is the subgroup of diffeomorphisms of M preserving the cohomology class [H]. 
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