9 Lecture 9 (Notes: K. Venkatram)

Last time, we talked about the geometry of a connected lie group G. Specifically, for any a in the
corresponding Lie algebra g, one can define a’'|, = L,.a and choose 8L € Q1(G, g) s.t. 6% (al) = a. For
instance, for GL,, with coordinates g = [g;;], one has 6% = g~'dg, and similarly 6% = dgg~!.This implies
that dg A 0L + gd0F =0 = dOF + 0 NOF =0 = dO* + %[GL, 6%] = 0, the latter of which is the
Maurer-Cartan equation.

Problem. 1. Extend this proof so that it works in the general case.
2. Show j*0f = —6*~.
3. Show df® — 167, 6%] = 0.
4. Show 0%(al)|, = Ad jaVa € g,g € G.

Continued on next page...
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9.1 Bilinar forms on groups

Let G be a connected real Lie group, B a symmetric nondegenerate bilinear form on g. This extends to a
left-invariant metric on G, and B is invariant under right translation

< B([X,Y],Z) + B(Y,[X, Z]) = 0VX,Y, Z. If this is true, we obtain a bi-invariant (pseudo-Riemannian)
metric on G.

Remark. Geodesics through e are one-parameter subgroups < B is bi-invariant. See Helgason for
Riemannian geometry of Lie groups and homogeneous spaces.

Example. Let B be the Killing form on a semisimple Lie group, i.e. B(a,b) = Try(ad,ads) for
S|m, 5 © M, 5Py, a constant multiple of Tr(X,Y"). Now, we can form the Cartan 3-form

1 1
H = 55 B(0",[0%,0%)) = 1;B(0", 0%, 6") (7

This H is bi-invariant, and thus closed. When G is simple, compact, and simply connected, the Killing
form gives \[H] as a generator for H3(G,Z) = Z. (See Brylinski.) For instance, given g = sl,,, 0% = g~ 1dg,
one has H = Tr(0F A 0L A 0F) ie. H = Tr(g~tdg)3.

9.1.1 Key calculation
Let m,p1,p2 : G X G — G be the multiplication and projection maps respectively. Then
m*H = Tr((gh) " d(gh))® = Te(h™ g~} (gdh + dgh))?
= Tr(h~'gh)® + Tr(g~'dg)® + Tr((dhh~')*g~'dg) + Tr(dhh =1 (g~ dg)?)
Now, define §# = dhh™!,Q = g 'dg, so dd = O A0 and dQ2 = —Q A Q. Then
dTr(dhh™ g tdg) = dTr(0 A Q) = Tr(dO A Q2 — 0 A dRQ) )
=Tr(0ANONQ+ONQAQ)

So, m*H — ptH — p5H = dr, where 7 = Tr(dhh~1g~tdg) = B(pi6%,p50%) € O%(G x G).

Now, recall that given a metric g : V. — V*, we have a decomposition Ve V* =Cy & C_ for Cy =T4.
Moreover, any Dirac structure L C V @ V* can be written as the graph of A € O(V, g) thought of as
A:Cy —C_. NOw, for X € V,let XT = X +gX € Cx. Then L{ = {X* £ (AX)"|X € V} are the
Dirac structures. Note that

(X* £ (AX)", X+ £ (AX)7) = g(X, X) — g(AX, AX) = 0 (10)

Let B be a bi-invariant metric on G. Then the map A, = Ly-1, Ry : T,G — TG, a” — a® is orthogonal
for B and ad(G)-invariant, since

A(E

e .G
adg*i \Ladg* (11)
A 1

Typg—1G 25Ty G
where adg. = Lg«Rg-1,. Thus, we find that

adg. Agad,, = LyRy-1RyLy-1RyLy-1 = Ly-1,-1,Rypg-1 = Ay (12)

Overall, L+ (A) are ad(G)-invariant almost Dirac structures in (T @ T%)(G). T, G is spanned by the a”, so
L. is spanned by (a®)* + (a¥)~ = al + B(at) + a" — B(a®) and Ly = (al + af* + B(al — a’?)). Recall
that 6% (a®) = a so {a* + af* + B(a® — af?)) = (al + o’ + B(0L — 6%, a)). Similarly,

L_ = (a* —a® + B(0* + 6", a)).
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Remark. Since a — a® generates the adjoint action, [a® — a® bl — bF] = [a,b]L — [a, b]F. But
[af + aft b + bF] = [a,b]L + [a,b]T is not integrable. L_(A) is integrable, however, w.r.t. the Courant
bracket twisted by H = B(6%, [6F, 6%]).
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