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MIRROR SYMMETRY: LECTURE 2 

DENIS AUROUX 

Reference for today: M. Gross, D. Huybrechts, D. Joyce, “Calabi-Yau Mani­
folds and Related Geometries”, Chapter 14. 

1. Deformations of Complex Structures 

An (almost) complex structure (X, J) splits the complexified tangent and 
(wedge powers of) cotangent bundles as 

1 
TX ⊗ C = TX1,0 ⊕ TX0,1 , v 0,1 = (v + iJv)

2
T ∗X ⊗ C = T ∗X1,0 ⊕ T ∗X0,1, T ∗X1,0 = Span(dzi), T ∗X0,1 = Span(dzi)(1) 

k p,q

T ∗X ⊗ C = T ∗X = Ωp,q(X)

p+q=k


If J is almost complex, these are C-vector bundles. J is integrable (i.e. a complex 
structure) 

(2) 
[T 1,0, T 1,0] ⊂ T 1,0 ⇔ d = ∂ + ∂ maps Ωp,q → Ωp+1,q ⊕ Ωp,q+1 

2 
∂ = 0 on diff. forms ⇔ 

We obtain a Dolbeault cohomology for holomorphic vector bundles E: 

Cq ∂ ∂ 

(3) 
(X,E) = {C∞(X,E) → Ω0,1(X,E) → Ω0,2(X,E) → · · · } 

∂ 

H
∂

q(X,E) = ker∂/im∂ 

Deforming J to a “nearby” J � gives 

(4) Ω1,0 ⊆ T ∗C = Ω1,0 ⊕ Ω0,1 
J � J J 

is a graph of a linear map (−s) : Ω1
J
,0 → Ω0

J
,1 . J � is determined by Ω1

J
,
� 
0 (acted 

on by i) and Ω0,1 (acted on by i�). s is a section of (Ω1,0)∗ ⊗ Ω0,1 = T1,0 ⊗ Ω0,1 
J � J J j J 

i.e. a (0, 1)J -form with values in TJ 
1,0X. If z1, . . . , zn are local holomorphic 

1 
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coordinates for J , then s = sij 
∂ ⊗ dzj . A basis of (1, 0)-forms for J � is given 

∂zi� � ∂ 
by dzi − sijdzj and (0, 1)-vectors for J � by 

∂
∂
zk 

+ s�k . 
∂z� � j �� � � � �� �


s(dzi) s(∂/∂zk)


We can use this to test the integrability of J �. The Dolbeault complex ( q ΩX 
0,q⊗ 

TX1,0 , ∂) (∂ acts “on forms”) carries a Lie bracket 

(5) [α ⊗ v, α� ⊗ v�] = (α ∧ α�) ⊗ [v, v�] 

giving it the structure of a differential graded Lie algebra. 

Proposition 1. J � is integrable ∂s + 
2
1 [s, s] = 0.⇔ 

Proof. We want to check that the bracket of two 0, 1 tangent vectors is still 0, 1, 
i.e. that 

∂ � ∂ ∂ � ∂ 
(6) [ + s�k , + s�k ] ∈ TXJ

0,
� 
1 

∂zk ∂z� ∂zk ∂z� 

Evaluating this bracket gives � � 
∂s�j ∂s�i 

� 
∂ � ∂s�j ∂s�i ∂ 

(7) ∂zi 
− 
∂zj ∂z� 

+ (ski 
∂zk 

− skj 
∂zk 

)
∂z�

� k,� 

We want this to be 0, i.e. for all i, j, �, 

∂s�j ∂s�i 
� ∂s�j ∂s�i

0 = 
∂zi 

− 
∂zj 

+ (ski 
∂zk 

− skj 
∂zk 

) 
(8) � �� � k � �� � 

coefficient of ∂ in 
2
1 

∂z� 
⊗(dzi∧dzj ) in (∂s) [s,s] 

We leave the rest as an exercise. � 

We would now like to use this to understand the moduli space of complex 
structures. Define 

(9) MCX (X) = {J integrable complex structures on X}/Diff(X) 

(or, assuming that Aut(X, J) is discrete, we want that near J , ∃ a universal family 
X → U ⊂MCX (complex manifolds, holomorphic fibers ∼= X) s.t. any family of 
integrable complex structures X � → S induces a map S → U s.t. X pulls back 
to X �). We have an action of the diffeomorphisms of X: for φ ∈ Diff(X) close to 
id, 

dφ : TX ⊗ C 
∼ 
φ∗TX ⊗ C→ 

(10) ∂φ : TX1,0 φ∗TX1,0 → 

∂φ : TX0,1 φ∗TX1,0 → 
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so 

φ∗dzi = dzi ◦ dφ = dzi ◦ ∂φ + dzi ◦ ∂φ 

(11) = (dzi ◦ ∂φ)(id + (∂φ)−1 ∂φ)� �� � 
· 

(1,0) for J 

Deformation by s ∈ Ω0,1(X,TX1,0) gives Ω1
J
,
� 
0 = {α − s(α)|α ∈ Ω1,0} (the graph 

of −s): taking s = −(∂φ)−1 · ∂φ : TX0,1 → φ∗TX1,0 → TX1,0 gives the desired 
element of Ω0,1(TX1,0). 

1.1. First-order infinitesimal deformations. Given a family J(t), J(0) = J 
gives s(t) ∈ Ω0,1(X,TX1,0), s(0) = 00. By the above, this should satisfy 

1 
(12) ∂s(t) + [s(t), s(t)] = 0 

2
dsIn particular, s1 = 
dt t=0 solves ∂s1 = 0. We obtain an infinitesimal action of|

dφDiff(X): for (φt), φ0 = id , 
dt |t=0 = v a vector field, 

d d 
(13) 

dt
|t=0(−(∂φt)

−1 ◦ ∂φt) = −
dt
|t=0(∂φt) = −∂v 

This implies that first-order deformations are given as 

Ker (∂ : Ω0,1(TX1,0) Ω2,0(TX1,0))
(14) Def1(X, J) = 

→ 

Im(∂ : C∞(TX1,0) Ω0,1(TX1,0))→ 

We can write this more compactly using Dolbeault cohomology, namely H
∂ 
1(X,TX1,0). 

Furthermore, given a family 

X ��

�� ��

X

∗ �� S 

(15) 

of deformations of (X, J) parameterized by S, we get a map T∗S → H1(X,TX1,0) 
called the Kodaira Spencer map 

Remark. A complex manifold (X, J) is a union of complex charts Ui with biholo­

morphisms φij : Uij 
∼ 
Uji s.t. φij = φ−1 and φij φjk Deformations→ ji = φik on Uijk. 

of (X, J) come from deforming the gluing maps φij among the space of holomor­
phic maps. To first order, this is given by holomorphic vector fields vij on Ui ∩Uj 

s.t. vij = −vji and vij + vjk = vik on Uijk. Cech 1-cocycleThis is precisely the ˇ

conditions in the sheaf of holomorphic tangent vector fields. Modding out by 
holomorphic functions ψi : Ui → Ui (which act by φij �→ ψj φij ψ

−1) is precisely
∼ 

i 

modding by the ˇ H1(X,TX1,0).Cech coboundaries. Thus, Def1(X, J) = ˇ
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1.2. Obstructions to Deformation. Given a first-order deformation s1, one 
can ask if one can find an actual deformation s(t) = s1t + O(t2) (or even a formal 
deformation, i.e. non-convergent power series). Expand 

(16) s(t) = s1t + s2t
2 + · · · ∈ Ω0,1(X,TX1,0) 

Then the condition ∂s(t)+ 1
2 [s(t), s(t)] = 0 implies that ∂s1 = 0, ∂s2 + 1

2 [s1, s1] = 
0, ∂s3 + [s1, s2] = 0, Now, we need [s1, s1] ∈ im (∂) ⊂ Ω0,2(TX1,0). We know · · · . 
that [s1, s1] ∈ Ker (∂). Thus, the primary obstruction to deforming is the class 
of [s1, s1] in H2(X,TX1,0). If it is zero, then there is an s2 s.t. ∂s2 + 1

2 [s1, s1] = 0, 
and the next obstructure is the class of [s1, s2] ∈ H2(X,TX1,0). We are basically 
attempting to apply by brute force the implicit function theorem. 

If it happens that H2(X,TX) = 0, then the deformations are unobstructed 
and the moduli space of complex structures is locally a smooth orbifold (not 
a manifold, because we may have to quotient by automorphisms) with tangent 
space H1(X,TX1,0). For Calabi-Yau manifolds, this will not be true: however, 
we still have 

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau (Ωn,0 
= X 
∼

OX ) with H0(X,TX) = 0 (automorphisms are discrete), deformations of X are 
unobstructed and, assuming Aut(X, J) = {1}, MCX is locally a smooth manifold 
with T MCX = H1(X,TX). 

Theorem 2 (Griffiths Transversality). For a family (X, Jt), αt ∈ Ωp,q(X, Jt) = 
d

t=0αt ∈ Ωp,q + Ωp+1,q−1 + Ωp−1,q+1 
⇒ 

.
dt |

Proof. Jt is given by s(t) ∈ Ω0,1(TX1,0), s(0) = 0. In local coordinates, we have 
T ∗X1,0 = Span{dz(t) 

= dzi − sij (t)dzj }Jt i 

= (17) αt αIJ (t)dzi
(

1 

t) ∧ · · · ∧ dzi
(

p 

t) ∧ dz(
j
t

1 

) ∧ · · · ∧ dz(
j
t

q 

) 

I,J ||I|=p,|J |=q 

dTaking 
dt t=0, the result follows from the product rule. We mostly get (p, q) terms |

d (t)
and a few (p + 1, q − 1), (p − 1, q + 1) forms (the latter from 

dt |t=0(dzik 
). � 




