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MIRROR SYMMETRY: LECTURE 2

DENIS AUROUX

Reference for today: M. Gross, D. Huybrechts, D. Joyce, “Calabi-Yau Mani-
folds and Related Geometries”, Chapter 14.

1. DEFORMATIONS OF COMPLEX STRUCTURES

An (almost) complex structure (X,.J) splits the complexified tangent and
(wedge powers of) cotangent bundles as

1
TX®C=TX""eTX" 2 = (v +iJv)
T*"X@C=TX"Yo1 X T*X" = Span(dz;), T*X"! = Span(dz;)

k )
AT"'xeC= KT*X:QM(X)

p+q=k

(1)

If J is almost complex, these are C-vector bundles. J is integrable (i.e. a complex
structure)

[Tl’O,Tl’O] C Tl,o o d=0 +§ maps QP Qp+1,q o) Qp7q+1

(2)

&9 =0 on diff. forms

We obtain a Dolbeault cohomology for holomorphic vector bundles E:
. CUX, E) = {C™(X,E) % 0°/(X,E) & Q2(X,E) — -}
HI(X,E) = kerd /im0

Deforming J to a “nearby” J' gives
(4) QY crc=0"e0 0l

is a graph of a linear map (—s) : Q},’O — Qg’l‘ J' is determined by Qb’,o (acted

on by i) and Q%' (acted on by ). s is a section of (2}°)* @ Q%' = ']I‘Jl.’o ® Q%!

ie. a (0,1);-form with values in T}’OX. If z1,..., 2, are local holomorphic
1
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coordinates for J, then s =) sijai ® dz;. A basis of (1,0)-forms for J' is given

9,
by dz; — zjjswdz] and (0, 1)-vectors for J' by -2 5+ Z SM@ZZ
————
«(d=) $(0/0%1)
We can use this to test the integrability of J'. The Dolbeault complex (€D, %@

TX', 0) (0 acts “on forms”) carries a Lie bracket
(5) [@a®@v,d/ @] =(aNd)® [v,0]
giving it the structure of a differential graded Lie algebra.
Proposition 1. J' is integrable < 0s + 1[s, s] = 0.

Proof. We want to check that the bracket of two 0,1 tangent vectors is still 0, 1,
i.e. that

0
TX
(6) 5 +ZS‘”“azz 8zk ;S’f’“a Je
Evaluating this bracket gives
Osgj  Osy\ O 83@ 0sgi. O
(7) ZZ: (azi 0z, ) 0 ;( Sz 0
We want this to be 0, i.e. for all 7, j, ¢,
0sp;  0Sy; j Osy;
0= - i
(8) 0z; 0%; +Z Sk K 50 0z, )
N’ ~~ -
coefficient of 6 ®((f AdZ;) in (9s) 5[575}
We leave the rest as an exercise. [

We would now like to use this to understand the moduli space of complex
structures. Define

9) Mex(X) = {J integrable complex structures on X }/Diff(X)

(or, assuming that Aut(X, J) is discrete, we want that near J, 3 a universal family
X — U C Mcx (complex manifolds, holomorphic fibers = X)) s.t. any family of
integrable complex structures X’ — S induces a map S — U s.t. X pulls back
to X’). We have an action of the diffeomorphisms of X: for ¢ € Diff(X) close to
id,

dp: TX®C = ¢'TX ®C
(10) d¢ : TX" — T X"

¢ : TX% — ¢*TX !
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SO
¢*dz; = dz; 0 de = dz; 0 0 + dz; 0 O
(11) = (dzi 0 9¢)(id + (9¢)™" - Do)
N——

(1,0) for J

Deformation by s € Q%(X, TX0) gives Q' = {a — s(a)|a € Q'°} (the graph
of —s): taking s = —(0¢) ™' - 0¢ : TX"! — ¢*TX'0 — TX0 gives the desired
element of QY1 (TX10).

1.1. First-order infinitesimal deformations. Given a family J(t), J(0) = J
gives s(t) € Q%(X, TX"0), 5(0) = 00. By the above, this should satisfy

(12) Os(t) + =[s(t), s(t))] =0

In particular, s; = ghzo solves 0s; = 0. We obtain an infinitesimal action of
Diff(X): for (¢:), po =1id , %\tzo = v a vector field,
(13) i‘t=0<_(a¢t)il Og(bt) = —i‘tzo(g@) = —0v
dt dt
This implies that first-order deformations are given as
Ker (0 : QUYTXMW) — Q20(TX10))
Im(0 : C>(TX10) — QO1(TX10))

(14) Def, (X, J) =

We can write this more compactly using Dolbeault cohomology, namely Hi(X, TX™"?).
Furthermore, given a family

X—X
(15) |
* — ¢
of deformations of (X, J) parameterized by S, we get a map TS — H' (X, TX"?)

called the Kodaira Spencer map

Remark. A complex manifold (X, J) is a union of complex charts U; with biholo-
morphisms ¢;; : Uj; = Uji s.t. @5 = gbj_ll and ¢;;Q;r = @i on Usji. Deformations
of (X, J) come from deforming the gluing maps ¢;; among the space of holomor-
phic maps. To first order, this is given by holomorphic vector fields v;; on U; NU;
s.t. v;; = —vj; and v + vjr = vy on Uy, This is precisely the Cech 1-cocycle
conditions in the sheaf of holomorphic tangent vector fields. Modding out by
holomorphic functions ¢; : U; = U; (which act by ¢;; +— ;¢4 ") is precisely
modding by the Cech coboundaries. Thus, Def; (X, J) = H (X, TX"?).
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1.2. Obstructions to Deformation. Given a first-order deformation s;, one
can ask if one can find an actual deformation s(t) = s;t +O(t?) (or even a formal
deformation, i.e. non-convergent power series). Expand

(16) s(t) = syt + sot? +--- € QUN(X, TX )

Then the condition ds(t) + [s(t), s(t)] = 0 implies that ds; = 0,dss+ 1 [s1, s1] =
0,0s3 + [s1,52] = 0,---. Now, we need [sy, s1] € im (9) C Q**(TX"?). We know
that [s1,s1] € Ker (9). Thus, the primary obstruction to deforming is the class
of [s1,51] in H2(X, TX™). If it is zero, then there is an sy s.t. sy + %[81, s1] =0,
and the next obstructure is the class of [s1, so] € H*(X,TX"?). We are basically
attempting to apply by brute force the implicit function theorem.

If it happens that H*(X,TX) = 0, then the deformations are unobstructed
and the moduli space of complex structures is locally a smooth orbifold (not
a manifold, because we may have to quotient by automorphisms) with tangent
space H'(X,TX1'?). For Calabi-Yau manifolds, this will not be true: however,
we still have

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau (Q3° =
Ox ) with H*(X,TX) = 0 (automorphisms are discrete), deformations of X are
unobstructed and, assuming Aut(X, J) = {1}, Mcx is locally a smooth manifold
with TMex = HY(X,TX).

Theorem 2 (Griffiths Transversality). For a family (X, J;), oy € QP X, J;) —

4|isoay € QP 4 QpFha=l 4 Qp=Latl,

Proof. J; is given by s(t) € Q(TX19) s(0) = 0. In local coordinates, we have

(17) = Y ap®da) A Adz) AdE AN dz)
LJ|I|=p,|J|=q

Taking %|t:0, the result follows from the product rule. We mostly get (p, ¢) terms

and a few (p+ 1,9 — 1), (p — 1,¢ + 1) forms (the latter from £|,_o(d=\"). O

k





