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MIRROR SYMMETRY: LECTURE 3

DENIS AUROUX

Last time, we say that a deformation of (X, J) is given by
= 1
(1) {s € Q"Y(X,TX)|0s + 5[5, s] = 0} /Diff (X)

To first order, these are determined by Def (X, J) = H*(X,TX), but extending
these to higher order is obstructed by elements of H?*(X,TX). In the Calabi-Yau
case, recall that:

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau (Q3° =
Ox ) with H*(X, TX) = 0 (automorphisms are discrete), deformations of X are
unobstructed.

Note that, if X is a Calabi-Yau manifold, we have a natural isomorphism
TX =2 Q% v i,0, so

(2) HY(X,TX)=H"1(X)~ g%
and similarly

(3) HY (X, TX)=H""" H*(X, TX)=H""?

1. HODGE THEORY
Given a Kihler metric, we have a Hodge * operator and L?-adjoints
(4) d* = —xdx, 0 = — * O«
and Laplacians
(5) A=dd +d*d0=00 +080

Every (d/0)-cohomology class contains a unique harmonic form, and one can
show that 00 = 1A. We obtain

H5-(X,C) 2 Ker (A: QF(X,C) O) = Ker (O: Q% 0)
(6) ~ (P Ker (0: 7 0) = P H(X)

pt+q=k p+q=k
1



2 DENIS AUROUX

The Hodge * operator gives an isomorphism H?? = H"P"~4 Complex con-
jugation gives HP? = H%P giving us a Hodge diamond

hn,n hn—l,n e e hO,n
hn,nfl hnfl,nfl
(7)
hl’l hO,l
hn,O e ce hl,O h0,0

For a Calabi-Yau, we have
(8) HPY=H™ P = HIP(X,0%) = HY P(X,0x) = HO"P = H=p0

Specifically, for a Calabi-Yau 3-fold with h'* = 0, we have a reduced Hodge
diamond

0 oAb R0
0 R A0

1 0 0 1

Mirror symmetry says that there is another Calabi-Yau manifold whose Hodge
diamond is the mirror image (or 90 degree rotation) of this one.

There is another interpretation of the Kodaira-Spencer map H!(X,TX)
H™" b1 For X = (X, Jy)ses a family of complex deformations of (X, J), ¢1(Kx) =
—ci(TX) = 0 implies that Qfy ;) = Ox under the assumption H'(X) = 0,
so we don’t have to worry about deforming outside the Calabi-Yau case. Then
[ € H;‘;O(X) C H"(X,C). How does this depend on t? Given 2 € Ty, %t €
00 @ Qb by Griffiths transversality:

~

0
(10) oy € Q}}’tq — aat c OP9 Qp—Latl + Qpt+la—1



MIRROR SYMMETRY: LECTURE 3 3

Since %[, is d-closed (d€ = 0), (% |i—o) ™Y is O-closed, while
(9Qt aQt
11

( ) a( at ’t =0 at ’t—

Thus, 3[(%|i=o) " "V] € H*H1(X).
For fixed €, this is independent of the choice of ;. If we rescale f(t)Q,

0 _af oY
8t(f( ) = ot Qt+f()8t

Taking t — 0, the former term is (n,0), while for the latter, f(0) scales linearly
with Q°.

(13) H" M (X)=HY(X, Q%) =2 H(X,TX)

and the two maps TpS — H" V1 X), HY(X,TX) agree. Hence, for § € H' (X, TX)
a first-order deformation of complex structure, 6 - Q € HY(X,0% @ TX) =
H"1(X) and (the Gauss-Manin connection) [V,Q]"~11) € H*11(X) are the
same. We can iterate this to the third-order derivative: on a Calabi-Yau three-
fold, we have

(14) <91,92,63> == / Q N (91 . ‘92 . 03 . Q) = / Q N (VQIVQQVQSQ)
X X

where the latter wedge is of a (3,0) and a (0,3) form.

)n 1,1)+6( )nl,l)zo

(12)

2. PSEUDOHOLOMORPHIC CURVES

(reference: McDuff-Salamon) Let (X?",w) be a symplectic manifold, J a com-
patible almost-complex structure, w(-,J-) the associated Riemannian metric.
Furthermore, let (X, j) be a Riemann surface of genus g, 21,...,2; € ¥ market
points. There is a well-defined moduli space M, = {(X, 7, 21, ..., 2)} modulo
biholomorphisms of complex dimension 3g — 3 + k (note that M3 = {pt}).

Definition 1. u : ¥ — X is a J-holomorphic map if Jodu = duo J, ve.
dsu = 3(du+ Jduj) = 0. For 8 € Hy(X,Z), we obtain an associated moduli
space

(15)  Myp(X, J,8) = {(2, 4,21, -, 2z1),u: 2 — X|u[¥] = 3,0,u =0}/ ~

where ~ s the equivalence given by ¢ below.

Y20, 2 — X
(16) asl% g
Xz, 2

This space is the zero set of the section 0; of € — Map(%, X)g x Mgy, where €
is the (Banach) bundle defined by £, = WP(2, Q%' @ w*TX).
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We can define a linearized operator
Dy : WP(S ' TX) x TMyp — WP (S, Q% @ U'TX)

1
(17) Dg(v,j’):§(VU+JVU]'+(VUJ)-du-j+J~du-j’)

- 1 1
=0v+ §(VUJ)du-j—|— §J-du v
This operator is Fredholm, with real index
(18) indexg Dy := 2d = 2(c1(T'X), 5) + n(2 — 2g) + (69 — 6 + 2k)

One can ask about transversality, i.e. whether we can ensure that Dy is onto at
every solution. We say that u is regular if this is true at u: if so, M, (X, J, 5)
is smooth of dimension 2d.

Definition 2. We say that a map ¥ — X is simple (or “somewhere injective”)
if 3z € 3 s.t. du(z) #0 and u=(u(z)) = {z}.

Note that otherwise u will factor through a covering ¥ — 3. We set M (X, J, )
to be the moduli space of such simple curves.

Theorem 2. Let J(X,w) be the set of compatible almost-complex structures on
X: then

(19)
JX,B) ={J € T(X,w)| every simple J-holomorphic curve in class [ is reqular}

is a Baire subset in J(X,w), and for J € J"9(X,3), M} (X, J,3) is smooth
(as an orbifold, if Mgy, is an orbifold) of real dimension 2d and carries a natural
orientation.

The main idea here is to view d;u = 0 as an equation on Map(%, X) x M, ; X
J(X,w) 3 (u,7,J). Then Dy is easily seen to be surjective for simple maps. We
have a “universal moduli space” MM =% 7 (X,w) given by a Fredholm map,
and by Sard-Smale, a generic J is a regular value of 7;. This universal moduli
space is M* = |_|J€J(X’w) M; (X, J,8). For such J, M7, (X, J, 3) is smooth of
dimension 2d, and the tangent space is Ker (D). For the orientability, we need
an orientation on Ker (Dj). If J is integrable, the D5 is C-linear (Dg = ), so
Ker is a C-vector space. Moreover, V.Jy, J; € J"9(X, 3), 3 a (dense set of choices
of) path {J; }seo,1) 8-t [ejo1) My (X, Ji, B) is a smooth oriented cobordism. We
still need compactness.





