MIT OpenCourseWare
http://ocw.mit.edu

18.969 Topics in Geometry: Mirror Symmetry
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

MIRROR SYMMETRY: LECTURE 6

DENIS AUROUX

1. THE QUINTIC 3-FOLD AND ITS MIRROR

The simplest Calabi-Yau’s are hypersurfaces in toric varieties, especially smooth
hypersurfaces X in CP"*! defined by a polynomial of degree d = n + 2, i.e. a
section of Opnt1(d). Smoothness implies that NX = Opnii(d)|x, defined by
v V,P =dP), so TP |x = TX & NX = TX & Opnr1(d)|x (“adjunc-
tion”). Passing to the dual and taking the determinant, we obtain

(1) QnJrl‘]pn—O—l‘X & Q} ® O]PWH—I(—d)’X
Now:
(2)
T,P"*' @ C = Hom(¢, /) @ Hom(¢, £) = Hom(¢, C"*?) = Hom(O(—1),, C"?)

implying that TP @& O = O(1)"*2. Again, passing to the dual and taking the
determinant, we obtain

(3) il ® 0= 0(-1)%) = O(—(n + 2))
We finally have
(4) Opn+1(—(n + 2))|X = Q& X O]pn+1(_d)|X — Q} =

if d=n+ 2, i.e. our X is indeed Calabi-Yau.

Example. Cubic curves in P? correspond to elliptic curves (genus 1, isomorphic
to tori), while quartic surfaces in P? are K3 surfaces.

The quintic in P* is the world’s most studied Calabi-Yau 3-fold. The coho-
mology of the quintic can be computed via the Lefschetz hyperplane theorem:
inclusion induces i, : H,.(X) — H,(CP*) for r <n =3, so Hi(X) = 0, Hy(X) =
Hyo(CP*) = Z. Thus, h* = 0 and h*° = 0: by argument seen before, A = 1.
Moreover,

(5) X(X) =e(TX) - [X] = c3(TX) - [X]
By working out ¢(TP*)|x = ¢(TX)c(Ops(5))|x (from adjunction), we have

(6) c(TP*) = c(TP* @ O) = c(O(1)®%) = (1 + h)®
1
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where h = ¢;(O(1)) is the generator of Hy(CP*) and is Poincaré dual to the
hyperplane. Restricting to X gives

(7)  (L+h|x)’ =145h|x +10R%|x + 10h%|x = (1 + 1 + 2 + ¢3)(1 + 5y X)
so ¢y = 0, ¢ = 10h?|x, c3 = —40h®|x. Thus,

(8) X(X) = —40R* - [X] = —40([line] N [X]) = —40 -5 = —200

We conclude that

9) ho+hy —hs+hy+hs=1+1—dim H3(X)+1+1=-200

implying that dim Hs = 204. Since h3? = h%3 = 1, we obtain h'? = h%! = 101.
In fact, h'"' = 1, and we have a symplectic parameter given by the area of a
generator of Hy(X) (given by the class of a line in Hy(P*)). We further have
101 = h®! complex parameters: the equation of the quintic gives h%(Ops(5)) =
(g) = 126 dimensions, from which we lose one by passing to projective space, and
24 by modding out by Aut(CP*) = PGL(5,C). That is, all complex deformations
are still quintics.

Now we construct the mirror of X. Start with a distinguished family of quintic

3-folds
(10) Xy ={(zo: - 112y € Pt | fo = xg + 4 xi — bprorixoxsry = 0}

Let G = {(ag,...,a4) € (Z/5Z)°| > a; = 0}/(Z/5Z = {(a,a,a,a,a)}). Then
G = (Z/5Z)% acts on Xy, by (z;) — (2,6%) where & = ¥™/5 (fy is G-invariant
because Y a; = 0 mod 5, and (1,1,1,1,1) acts trivially because the z; are
homogeneous coordinates). Furthermore, X, is smooth for ¢ generic (i.e. 9° #
1), but X,/G is singular: the action has fixed point (zg : -+ : z4) € Xy s.t. at
least two coordinates are 0. This consists of
e 10 curves Cj;, where e.g. Coy = {zg = 21 = 0,23 + 23 + z§ = 0} with
stabilizer Z/5 = {(a, —a,0,0,0)}, so Cp; /G = P! is the line yo+y3+ys = 0
in P? y; = 27, and
e 10 pOiIltS Pijk; c.g. P(]’l’g = {IO = T1 = X9 = O,I'g + LUZ = O} with
stabilizer (Z/5Z)?%, so Py2/G = {pt}.
The singular locus of X,,/G is the 10 curves C_zy = C};/G = P! with 61-]-, ﬁjk, Cix
meeting at the point ?ijk.

Next, let X/ be the resolution of singularities of (X,/G), i.e. X/ smooth and
equipped with a map X % X,,/G which is an isomorphism outside 7—(|J Ci;).
The explicit construction is complicated, and one can use toric geometry to do
it. One can further show that it is a crepant resolution, i.e. the canonical bundle
K Xy = 7 Kx,/a, so the Calabi-Yau condition is preserved and XJ is a Calabi-
Yau 3-fold.
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Along Cy; (away from Pyj.), X,/G looks like (C?/(Z/5Z)) x C, (w1, x1, 23) ~
(€%2;, &%y, x3). Now C?/(Z/5Z) = {uv = w®} C C3, [z, 3] — [27, 25, 2112)
is an A, singularity, which can be resolved by blowing up twice, getting four
exceptional divisors. Doing this for each Uij gives 40 divisors. Similarly, resolving
each p, ;. creates six divisors, for a total of 60 divisors. Thus, Xz\ﬁ/ contains 100
new divisors in addition to the hyperplane section, so indeed hl’l(be/ ) = 101.
Similarly, as we were only able to build a one-parameter family, h2’1(XJ ) =1,
giving us mirror symmetric Hodge diamonds:

1 0 0 1 1 0 0 1
i 0 1 101 O 0 101 1 O
1] — 1] \Y
(11) W (X) = 0 101 1 0 h (X¢> 10 1 101 0
1 0 0 1 1 0 0 1

We want to see how mirror symmetry predicts the Gromov-Witten invariants
Ny (the “number of rational curves” ng) of the quintic. For that, we need to
understand the mirror map between the Kéhler parameter ¢ = exp(2mi fg B+iw)
on X and the complex parameter 1) on the mirror X;j (which will also give, by

differentiating, an isomorphism H'!'(X) = H*!(X)) as well as calculations of
the Yukawa coupling on H*'(X).

1.1. Degenerations and the Mirror Map. Last time, we saw a basis {e;} of
H?(X,Z) by elements of the Kéhler cone gives coordinates on the complexified
Kéhler moduli space: if [B 4 iw] = ) t;e;, the parameter ¢; = exp(2wit;) € C*
gives the large volume limit as ¢; — 0,Im (¢;) — oo. Physics predicts that
the mirror situation is degeneration of a large complex structure limit and that,
near such a limit point, there are “canonical coordinates” on the complex moduli
spaces making it possible to describe the mirror map.

e Degeneration: consider a family X = D? where for ¢ # 0, X, = X (with
varying J) and for t = 0, X is typically singular. For instance, consider
the camily of elliptic curves C; = {y?z = 2® + 222 — t2°} C CP? (in affine
coordinates, C; : y* = 23 + 2% — t). C} is a smooth torus for ¢ # 0, and
nodal at ¢ = 0, obtained by pinching a loop on the torus.

e Monodromy: follow the family (X;) as ¢ varies along the loop in 7;(D? \
{0}, %) going around the origin. All the X;s are diffeomorphic, and thus
induce a monodromy diffeomorphism ¢ of X;,, defined up to isotopy. This
in turn induces ¢, € Aut(H, (X, Z)). In the above example, ¢ acts on

H\(Cy,) = Z7 by (1) } ) (the Dehn twist): observe that C; 23 CP! =

CU {00} by projection to x, and the branch points are oo plus the roots

of 23+ 2 —t. Ast — 0, there is one root near —1 and two near 0, which

rotate as t goes around 0. Letting a be the line between the two roots
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near 0 and b be between the root near —1 and the closest other root, the
monodromy maps a, b to a,b + a.

Remark. Note that this complex parameter ¢ is ad hoc. A more natural way to
describe the degeneration would be to describe C as an abstract elliptic curve
Cy =2 C/Z + 7(t)Z. Then 7(t), or rather exp(2mi7), is a better quantity. Equip
C; with a holomorphic volume form €2; normalized so fa )y = 1Vt. Then let
7(t) = [, as t goes around the origin, 7(t) — 7(t) 4+ 1 since b — b+ a.
Moreover, ¢(t) = exp(2mit(t)) is still single-valued, and as ¢t — 0, we still have
Im 7(t) — oo and ¢(t) — 0. In the former case, we have | dy—x € —iR" tending

to 0 and fb df € R* tending to a constant value, so the ratio goes to +ioco. In

the latter case, ¢(t) is a holomorphic function of ¢, and goes around 0 once when
t does, i.e. it has a single root at t = 0. Thus, ¢ is a local coordinate for the
family.

Next time, we will see an analogue of this for a family of Calabi-Yau manifolds.





