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MIRROR SYMMETRY: LECTURE 8

DENIS AUROUX

Last time: 18.06 Linear Algebra.
Today: 18.02 Multivariable Calculus. / 18.04 Complex Variables
Thursday: 18.03 Differential Equations

1. MIRROR SYMMETRY CONJECTURE

Last time, we said that if we have a large complex structure limit (LCSL)
degeneration, then we have a special basis (o, ..., as, B, .., 3s) of H3(X,Z)
s.t. [ is invariant under monodromy and [y, ..., s are mapped by monodromy

by (; %, Bi — mj;iBy for my; € Z. We decided that we would normalize so that

fﬁo Q =1, and let w; = fﬁi Q (w; , w; —mj;) and ¢; = exp(2miw;) (which we
called canonical coordinates).

Ezample. Given a family of tori 72 with monodromy < é } L [a=1,[0=

7 (precisely what you get identifying the elliptic curve with R?/Z & 7Z), ¢ =
exp(2miT).

If e; is a basis of H? (X, 7),e; in the Kéhler cone, we obtain coordinates on the
complexified Kéhler moduli space: if [B +iw] = Y fie;, let §; = exp(2mit;), {; =
[« B +iw.

Ezample. Returning to our example, § = exp(2i sz B+ iw).

Conjecture 1 (Mirror Symmetry). Let f : X — (D*)° be a family of Calabi-
Yau 3-folds with LCSL at 0. Then 3 a Calabi-Yau 3-fold X and choices of
bases ay, . ..,as, B, ..., 0s of H3(X,Z), ey,...,es of H¥(X,Z) s.t. under the
map m : (D*)S - MKah(X); ((J17---7CJS) = (%7"'7@5’)7 4 = ¢, we have a
coincidence of Yukawa couplings

o o0 0 o 0 0 5
(1) (o a5 =5 5 7 )mw)

9q; 9q; gy, 04" 9q; g,
where the LHS corresponds to [, Q A (%%%Q) avnd the RHS to a (1,1)-
coupling, i.e. the Gromov-Witten invariants (e;, ej,ek%fﬁ (since 27ricjia% = 665 =

e; € HM etc.).
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Remark. A more grown-up version of mirror symmetry would give you an equiv-
alence between H*(X, ATX) with its usual product structure and H*(X,C)
with the quantum twisted product structure as Frobenius algebras (making this
concrete would require more work).

1.1. Application to the Quintic (See Gross-Huybrechts-Joyce, after
Candelas-de la Ossa-Greene-Parkes). Last time, we defined

4

(2) Xw = {(.TO L .T4) € IED4 ’ fw = Z.T? — 5wx0x1x2x3x4 = O}
0

with

(3) G ={(ao,...,a4) € (Z/5Z)"| Zai =0}/{(a,a,a,a,a)} = (Z/57)*

acting by diagonal multiplication z; — 2;£%, € = e*™/5. We obtained a crepant
resolution X, of X, /G (its singularities are C; = {z; = x; = 0}/G), which has
b1 =101, h*' =1, and h® = 4. The map (wg : ... : x4) — (%0 : T1 ¢ ... : X4)
gives Xy = Xg4, so let z = (5£)™°. Then z — 0, i.e. ¢ — o0, gives a toric
degeneration of X, to {zor1292324 = 0}. This is maximally unipotent, as the
monodromy on H? is given by

1 100
0110
(4) 0011
0001

so it is LCSL. We want to compute the periods of the holomorphic volume form
on X¢. There is a volume form Q¢ on Xw induced by the G-invariant volume
form @, on X, by pullback via 7 : )@ — Xy/G. We want to find a 3-cycle
By € H3(X,) that survives the degeneration. For z = 0, {[[2; = 0} contains
tori in component P?’s, e.g.

(5) To=A(zo: - :zq)| x4 =1, |x0| = |21| = |22] = 9,253 = 0}

We want to extend it to z # 0. Take x4 = 1,|xg| = |21] = |x2| = : then x3
should be given by the root of f,, which tends to 0 as 1) — co. We need to show
that there is only one such value (giving us a simple degeneration rather than a
branched covering). Explicitly, set x5 = (Yzozi122)"*y:

(6) fo=0& xd + 2 + 25+ (¢x0x1x2)5/4y5 +1— 5(@[13:0.%1332)5/43/
1.e.
v oag 4l +ad+1

(7) v= g * 5(w$01‘1$2)5/4
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One root is y ~ ¥~5/* — 0, with the other four roots converging to v/5. So

for x5, we have one root ~ 1!, and 4 roots ~ ¢'/*. Now, G acts freely on
Ty C Xy, and Tp/G is contained in the smooth part of X, /G and gives a torus
Ty C )Q,,ﬁo — [Ty]. Because Ty, Tj still make sense at z = 0, their class is
preserved by the monodromy.

Next, we want to get the required holomorphic volume form. In the affine
subset x4 = 1, let €2, be the 3-form on X, characterized uniquely by

(8) Q’l/) A dfw == 5¢d$0 VAN de’l VAN dl‘Q VAN dIg

at each point of X,;. At a point where % # 0, (xo, 21, x2) are local coordinates,
and

0, = 5¢d£€0 A diL’l A dl’g . 5wd.ﬁ[0 N d$1 A\ d.’EQ
(9) v = ofs =

Oxg

513 — Bihwox s

Defining it in terms of other coordinates, we get the same formula on restrictions.
We need to extend this to where x4, = 0. We could rewrite this using homogeneous
coordinates, but note that the corresponding divisor is just the canonical divisor:
since X, is Calabi-Yau, this divisor has no zeroes or poles at x4 = 0. Since (2,
is G-invariant, it induces a 3-form on (X,,/G)""""¢ and lifts and extends to €,
on )Q with

- 1
(10) [ =g [ 2
T 5 To

Tool: we have the residue formula

(1) — [ fd= Y resy(=)

211 1
s z; poles of feD?2

So let T* = {|xg| = |z1| = |22| = |23]| = 6,24 = 1}. Then

1 5¢d$0dl‘1dl’2dl’3 / 1 / 5¢d1’3
_ = — dxodz,d
(12) 271 T4 fw T 271 S1 f¢ Toderaits

3
ToT1T2

where f,, has a unique pole at x3. The residue is precisely %, giving us

_ 5Y _
(13) = LO (af/8$3) dlL‘Odl’ldl’Q /TO Q¢
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So

1 drodxidredxs
Qy = 2 50 -1( 23 5 5 510 1)—
T i Jpa (BY)~Hag + 2) + 23 + 25 + 1) — xoz12203
-1
(14) _ 1 [ dzodwidradys (1 B (5w)71x8 + a4 x5 + b + 1)
LoL1T223

2T Jpa ToT1T2T3

N i/ daodaidaydas (x5 +af + 23 + 23 +1)"
271 0 T4 ToI1T2T3 (51/})m(w0x1$2x3)m

We want to find the coefficient of 1 in the latter term. We obviously need
m = 5n (the numerator only has powers which are a multiple of 5), and want
the coefficient of z{"z}"z5"z3" in (xf + x5 + x5 + x5 + 1), which is % We
finally obtain

e (5n)!
15 / Qp=—02mi)?y ——Fr —
(15) =2 s
In terms of z = (5¢)~°, the period is proportional to

o0

(16) bo(2) =Y E:;L))S' o

n=0
Set a,, = Ef:,l)); Then
4 (5n +5)!
(17)  (n+1)appy = i+ 1) =5(5n+4)(5n + 3)(5n + 2)(5n + 1)a,
Setting © = 2L : O( c,2") = > ne,2", giving us the Picard-Fuchs equation
(18) O%py = 52(50 + 1)(50 + 2)(50 + 3)(50 + 4) ¢y

Next time, we will show that there is a unique regular solution, and a unique
solution with logarithmic poles to our original problem.





