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MIRROR SYMMETRY: LECTURE 9

DENIS AUROUX

1. THE QUINTIC (CONTD.)

To recall where we were, we had

(1) Xw = {(«TO Lol .T4) S IED4 ’ fw = Z.T? — 5¢$0$1I2$3$4 = O}
with
(2) G ={(ao,...,as) € (Z/5Z)°| > _a; = 0}/{(a,a,a,a,0)} = (Z/5Z)°

acting by diagonal multiplication z; — z;£%,§ = e?™/5 We obtalned a crepant

resolution X, of Xy, /G- This family has a LCSL point at z = (5¢)™® — 0. There
was a volume form Qw on Xw induced by the G-invariant volume form €2, on X,
by pullback via 7 : X¢ — X, /G. We computed its period on the 3-torus

(3) To={(xg: - :xq) @y =1, |x0| = |21] = |22| =0, |23] K 1}

(or, on the mirror, Ty C X,) to be

—(9m)? > (5n)!
W ==Y, Tty

In terms of z = (5¢)~5, the period is proportional to

(5) do(z) = 3 O

— (n!)®
Setting © = 24 : O(Y ¢,2") = Y. nc,2", we obtained the Picard-Fuchs equation
(6) 0 o = 52(50 + 1)(50 + 2)(50 + 3)(50 + 4)¢y

Proposition 1. All periods wi satisfy this equation.

Note that all period satisfy some 4th order differential equation: H3 ()V(w, C)
is 4-dimensional, so [Q], - o [Qy], -
their integrals over any 3-cycle.

g w4 [Q¢] are linearly related. Thus, so are
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Idea of proof. We view (2, and its derivatives as residues. Let
4 —_~
=0
be a form on C°. It is homogeneous of degree 5 (not 0), so we need to multiply

by something of degree —5 to get a form on P4, If £, g are homogeneous, deg f =
590
fy
Xy. Now, given a 4-form with poles along some hypersurface X, it has a residue

on X which is ideally a 3-form on X, but is at least a class in H3*(X,C).

Recall from complex analysis, if ¢(z) has a pole at 0, reso(¢) = 5= [ ¢(2)dz
Now, let’s say that we have a 3-cycle C in X: we can associate a “tube” 4-cycle
in P* which is the preimage of C' in the boundary of a tubular neighborhood of
X. Then

99 _ 1 9Q
" Jooe(F) =5 [

If we only have simple poles along X, we get a 3-form characterized by

(9) resy (g) Adf = gQ

at any point of X.

deg g + 5, % is a meromorphic 4-form on P*. For instance, has poles along

Now, Qy = resx, (%), and differentiating k times gives

8’“ gkﬁ
(10) —[Qw] = TeSx <k_>
awk P f¢+1
Thus we can express
Q
(11) O[] = resx, (%)
%

for some gg, and write 52(50 + 1) - - - (50 + 4)[€2y] in the same form.
We compare the residues of forms with order 5 poles along X, using Griffiths
pole order reduction. Assume that ¢ is a 3-form with poles of order ¢ along X,

(12) féz 1) (259, — wig:)dag A+ Adag A= Aday A -+ Aday
1<)

with deg (go -+ g4) = 5¢ — 4, then

(13) d¢ = f£1+1 ( Z 'afw fu Zagj>
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In particular, if we have something of the form (> g; Oy )% (the Jacobian ideal
W

dz;
is the span of {% ), it can be written as something with a lower order pole plus
something exact. We obtain our result iteratively, showing in each stage that the
top order term belongs to the Jacobian ideal, and reduce to a lower order term.

When we get to order 1, we find that the residue is 0. 0

There is a theory of differential equations with regular singular points, i.e.
differential equations of the form

(14) 68f+siBj(z)@jf_o
j=0

where © = zd% and Bj(z) are meromorphic functions which are holomorphic at
z = 0. As with solving ordinary differential equations, we reduce to a 1st order
system of differential equations Qw(z) = A(z)w(z), where

0 1
f(2)
0 1
Of(z
(15) A=) = wi=|
e 0 1 L
—By(z) -+ -+ oo —By4(2) O f(z)

The fundamental theorem of these differential equations states that there exists

a constant s X s matrix R and an s X s matrix of holomorphic functions S(z) s.t.
: log® 2

(16) O(z) = S(z)exp((log 2)R) = S(z)(id + (log 2) R + TR +--4)

is a fundamental system of solutions to Ow(z) = A(z)w(z), and moreover if A(0)

doesn’t have distinct eigenvalues differing by an integer, we can take R = A(0).

This ® is multivalued, and z — €?™2 gives ®(2) — ®(2)e?™ (where e*™ 2 is the

monodromy).
In our case, Do = O1¢ —52(50 + 1) --- (50 +4)¢ = 0, so the coefficient of ©*
is 1 — 5°z, and the coefficients of @°,--. , ©3% are constant multiples of z. Then
%
17 1o — P3(0)-¢ =
(17) 0"~ = P(©) 6 =0

where Pj is independent of z. Then

(18) R = A(0) =

o O OO
oo O
SO = O
O = OO
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is nilpotent, and our assumption holds. The corresponding monodromy is

1
(19) T — 627riR — 0 .
0 O 1 27
0

Ifw(z)= | 3 Q, is a period, then it is a solution of the Picard-Fuchs equation, and
thus a linear combination of ®(z);’s. There exists a basis by, ..., by of Hg(X, C)
s.t. fbi Qy = ®(2)1;. The monodromy action in this basis is 7' (T maximally
unipotent implies that 0 is LSCL).

1.1. More periods of Q¢. The first fundamental solution we obtained is ¢y =

®(2)11, which is invariant under monodromy and regular at z = 0. Since
dim Ker (T —id) = 1, it is unique up to scaling, and ¢o(z) = > 2, (5(73;”
We next obtain ¢y = ®(2)12 s.t. ¢1(e2™2) = ¢1(z) + 2mido(z), which is unique
up to multiples of @y. Since ®(z) = S(z) exp(Rlog z), 1(2) = ¢o(2) log z + (=),
with ¢(z) holomorphic. Now

(20) O7(f(2)log2) = (67 f)log 2 + j(©7" f)

If we write F(z) = 2* — 5z H?:1(5x + j), then

1) D¢1(z) = F(O)(do(2) log z + ¢(2)) )

= (F(©)¢o)log z + F'(O) ¢y + F(0)¢

Since 0 = Dgy = D¢y, we find D(z) = —F'(©)po(z). This gives a recurrence
relation on the coefficients of ¢(z), and one obtains:

5n 1
(0)
Jj=n+1 J

We want canonical coordinates on the moduli space of complex structures: there
are 3y, f1 € H3(X,Z), with monodromy [y — g, 51 — B1 + (o, and

/ﬁo Q= Ceo(2)
/ﬁ 0= Co2) + ()

(22) i) =53 ok

n=1

(23)
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The monodromy acts on the latter by ffh Q— fﬂ1+ﬂo ), implying that 2miC" =
C'. Thus, the canonial coordinates are

J5, @
W= ——=
fﬁ()Q
C’ 1
:E+%%
(24) 0 5
_ ! lo + L log z + 1 ¢
T o BT o 8 T i gy

= exp(2miw) = cpzex gg(z)
q = exp(2miw) = ¢ p<%@)





