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MIRROR SYMMETRY: LECTURE 10 

DENIS AUROUX 

1. The Quintic (contd.) 

Recall that we had a quintic mirror family X̌ψ with LCSL degeneration as 
z = (5ψ)−5 0. We had the Picard-Fuchs equation for periods of Ω̌, and found →
2 solutions given by 

∞
(5n)! nφ0(z) = z 
(n!)5 

n=0 
(1) � � 

∞
(5n)! 

5n
1 nφ1(z) = φ0(z) log z + φ̃(z), φ̃(z) = 5 z 

(n!)5 j
n=1 j=n+1 

We then obtained canonical coordinates β0, β1 ∈ H3(X̌, Z) for the complex mod­
ˇuli space s.t. the monodromy preserves β0 and maps β1 �→ β1 + β0, and Ω are 

βi 

linear combinations of φ0, φ1. We wrote 

Ω̌ φ̃(z)
(2) w = �β1 

Ω̌
, q = exp(2πiw) = c2z exp 

φ0(z)β0 

where c2 is a normalization constant. 

1.1. Yukawa coupling on H2,1(X̌). Let 

dk 
ˇ ˇ(3) Wk = 

X̌z 

Ω(z) ∧ 
dzk 

Ω(z) 

We can rewrite the Picard-Fuchs equation in the form 

3
d4 � dk 

[Ω] + ˇ ck(z) Ω] = 0 (4) [ˇ
dz4 dzk 

k=0 
1 
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2 DENIS AUROUX �3 ˇThen W4 + ckWk = 0. By Griffiths transversality ( d
k 

Ω has no (0, 3)­k=0 dzk 

component unless k ≥ 3), W0 = W1 = W2 = 0. Moreover, 

d2 � 
d2Ω̌ d2Ω̌

� 
dΩ̌ d3Ω̌

� 
d4Ω̌

0 = 
dz2 

W2 = 
X̌ dz2 

∧ 
dz2 

+ 2 
X̌ dz 

∧ 
dz3 

+ 
X̌

Ω̌ ∧ 
dz4 

(5) � � 
dW3

= 0 + 2 − W4 + W4
dz 

implying that W4 = 2W3
�, hence W3

�(z) = −
2
1 c3(z)W3(z). Looking at the coeffi­

cients on the Picard-Fuchs equation gives 

c3(z) = 
z 
6 − 

1

2 
−
· 
5

5
5

5 

z 
= ⇒ (log W3

�) = 
−
z 
3

+
1 − 

55 

55z(6) c1 
= W3(z) = ⇒ 

(2πi)3z3 (55z − 1)· 

We next normalize Ω̌: scaling by f(z) changes 

∂ ∂ ∂ d3 d3Ω̌
(7) �

∂z 
, 
∂z 
, 
∂z 
� = f Ω̌ ∧ 

dz3 
f Ω̌ = f 2 Ω̌ ∧ 

dz3 

We want to scale by � 1 = const , giving 
Ω̌ φ0(z)

β0 

∂ ∂ ∂ c1
(8) �

∂z 
, 
∂z 
, 
∂z 
� = 

(2πi)3z3 (55z − 1)φ0(z)2 · 

Switching to ∂ = (dw )−1 ∂ gives us 
∂w dz ∂z 

∂ ∂ ∂ c1
(9) , ,�

∂w ∂w ∂w 
� = 

(55z − 1)φ0(z)2δ(z)3 ·
where 

dw d d φ̃(z)
(10) δ(z) = 2πiz = z (log q) = 1 + z 

dz dz dz φ0(z) 

To express this as a power series in q: 

dq d log q q φ̃(z) 
= q = δ(z) = c2δ(z) exp 

dz dz z φ0(z) 
(11) � �j � � 

dj ∂ ∂ ∂ 1 d c1 
, ,

dqj 
�
∂w ∂w ∂w 

� = 
c2δ(z) exp( ̃ dz (55z − 1)φ0(z)2δ(z)3φ/φ0) ·

Solving and expanding out, we obtain 

∂ ∂ ∂ 1950750 10277490000 
(12) �

∂w 
, 
∂w 

, 
∂w 
� = −c1 − 575 

c

c
1

2 
q − 

2 
c

c
1

2
2 

q 2 − 
6 

c

c
1

3
2 

q 3 + · · · 
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3 MIRROR SYMMETRY: LECTURE 10 

Now we can describe the mirror symmetry: there exists a basis of H2(X, Z) ∼= Z 
(where X is the original quintic) given by the Poincaré dual {e} of a hyperplane 
s.t., writing [B + iω] = te, q = exp(2πit) = exp(2πi 

line B + iω), the mirror map 
is 

1 ∂ ∂ 
(13)	 q q, w = log q t, = e↔ 

2πi 
↔ 

∂w 
↔ 

∂t 

where the latter correspondence is how we match H2,1(X̌) = T Mcx(X̌) ∼= 
T MKah(X) ∼= H1,1(X). Recall that 

d 
(14)	 �e, e, e� = e ∧ e ∧ e + �e, e, e�0,dq 

X d>0 

where �e, e, e�0,d is the Gromov-Witten invariant ( e)( e)( e)Nd = d3Nd of
d d d � 

degree d rational curves through three general hyperplanes, and Nd = d=kd� 
n

k
d
3
� 

counts multiple covers. Expanding out, we obtain 

(15) � � d 

�e, e, e� = 5 + d3Ndq 
d = 5 + d3 n3 

1 − 
q

qd 
d>0	 d>0 

= 5 + n1q + 8 n2 + 
n1 

q 2 + 27 n3 + 
n1 

q 3 + 64 n4 + 
n2 

+ 
n1 

q 4 + 
8 27 8 64 

· · · 

Matching these gives 

c1 = −5.• 
575 5 2875 •	n1 = 
c2 

· = 
c2 

: classical algebraic geometry tells us that 2875 is the 
number of lines on a quintic, c2 = 1. 

•	n2 = 609250 (had been calculated by Sheldon Katz, 1986) 
•	n3 = 317206375 (Ellingsrud-Stromme, 1990) 
• n4 = 242467530000 

The general verification is in the proof of mirror symmetry for the quintic by 
Givental and Lian-Liu-Yau separately around 1996 (more generally, they verify 
for Calabi-Yau complete intersections in toric varieties). 

2. Homological Mirror Symmetry 

This is a different mathematical formulation of mirror symmetry, given by 
Kontsevich in 1994. On the symplectic side, just as J-holomorphic curves gave 
a “quantum” intersection product on H∗(X), we will look at intersections of 
Lagrangian submanifolds, and obtain a “quantum” intersection theory involving 
J-holomorphic disks. On the complex side, we look at intersections of subvarieties 
and holomorphic maps/extensions of bundles/sheaves. Thus, the complex side is 
governed by “classical” algebraic geometry, and all the “quantum” information 
is on the symplectic side. For this, we will construct the Fukaya (A∞)-category, 
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which is roughly the category whose objects are Lagrangian submanifolds, whose 
morphisms are intersections, and whose algebraic structures (differential, prod­
uct, etc.) are governed by J-holomorphic disks. On the complex side, we just 
have coherent sheaves, and our mirror symmetry will give an equivalence of de­
rived categories. 

Future question: what is the relationship between this form of mirror sym­
metry and our previous one? Basic answer: open string theory gave an idea 
of considering submanifolds with boundary lying on branes. Kontsevich himself 
looked at the Hochschild cohomologies of the two categories above, which give 
the “big” quantum cohomology and the cohomology ring of polyvector fields on 
the respective sides. 

2.1. Lagrangian Floer Homology. Let (M,ω) be a symplectic manifold, L0, L1 

compact Lagrangian submanifolds. Assume that L0, L1 intersect transversely, 
i.e. is a finite set. Recall that we defined the Novikov ring as Λ = � L0 ∩ L1 

{ aiT λi | λi → ∞}. The Floer complex CF (L0, L1) is the free Λ-module Λ|L0∩L1| 

generated by L0 ∩ L1. Our goal is to define a differential δ s.t. HF (L0, L1) = 
H∗(CF, δ) is invariant under Hamiltonian isotopies. The motivation for this was 
to understand Arnold’s conjecture on Lagrangian intersections. From that point 
of view, HF is an obstruction to displacement of Lagrangians: in general, if we 
have a topological isotopy between two Lagrangian submanfiolds, a pair of inter­
sections can be cancelled along a Whitney disk (its corners are the intersections 
of the two Lagrangian submanifolds; Hamiltonian isotopies cancel intersection 
along holomorphic Whitney disks. δ will count holomorphic disks M between 
Lagrangian submanifolds. 




