MIT OpenCourseWare
http://ocw.mit.edu

18.969 Topics in Geometry: Mirror Symmetry
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

MIRROR SYMMETRY: LECTURE 15

DENIS AUROUX

1. LAGRANGIAN FLOER HOMOLOGY (CONTD)

Recall first our approaches to CF*(L, L) with the A, algebraic structure:

(1) Hamiltonian perturbations CF*(L, L) = AlEN¢u (L)
(2) FOOO: CF*(L, L) = C4(L, A) the space of “chains” on L. We have eval-
uation maps ev; : Mo 41(M, L; J, §) — L, giving multiplication maps

mie(Cr,...,C) = Y T*D(evy)u([Moss1(M, L; J, B)] Nev;Ci - - - New;Ch)
ﬁeﬂ’Q(X,L)

(3) Cornea-Lalonde approach: “clusters”. Pick a Morse function f: L — R,
and set CF*(L, L) = A my counts “clusters” of J-holomorphic disks
and gradient flowlines.

1.1. Disks and Obstruction. We've seen that, if Ly or L; bound holomorphic
disks, then 9% # 0 (the moduli space of index 2 strips has disk bubbling on the
boundaries in addition to strips). Counting the contribution of disk bubbles gives
mo € CF*(L,L). In FOOO theory, mo = »_ 5. ev. Mo (M, L; J, 3)] - TP, A
bubble on the boundary of the disk on L; is my(mog,p), for p € CF*(Ly, Ly),
mg € CF*(Ly, Ly). Hence my is the obstruction to 9* = 0. More generally, A.-
equations still hold if we include the terms my (- -, mg, - - - ), which we can inter-
pret as disks with k4 1 marked points developing disk bubbles on the boundary.
This is called a “curved A..-category”. We say that L is unobstructed if mg = 0,
and weakly unobstructed if my € A.1;, where 1, is the fundamental chain [L].
This implies centrality, and m? = 0 on CF (L, L). Weakly unobstructed L’s with
a given “charge” form an honest A..-category.

In FOOO, one tries to cancel the obstruction by a formal deformation b €
CFYL,L). For V=d+bon CF*(L, L), write

(1) my(Chy-..,C1) =Y mpge(b...bck, b b, bbb D)

This is still a curved A-algebra, and we look for b, s.t. m} = mg + my(b) +

mo(b,b) + -+ = 0. Such a b is called a “bounding cochain”. One can similarly
define weakly bounding cochains, and define our obmjects to be equivalence

classes of pairs (L, b) for b a weakly bounding cochain.
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1.2. Coherent Sheaves on a Complex Manifold. Let X be a complex man-
ifold, Ox the sheaf of holomorphic functions on X. Recall that a coherent sheaf
F is a sheaf of Ox-modules s.t.

e F is of finite type, i.e. there is an open cover by affines U; s.t. Fy, is
generated by a finite number of sections, i.e. 3 surjective maps OX@? -
Flu,.
e For all U C X open, ¢ : Ox|" — F|y a homomorphism of Ox-module,
Ker ¢ is of finite type.
If X is nice enough, F has finite presentation, i.e. 3 an open cover s.t. there is
an exact sequence

(2) OY'lv — OX"lv — Flu — 0

i.e. a coherent sheaf is the cokernel of a morphism of vector bundles. Coherent
sheaves form an abelian category, i.e. they contain kernels and cokernels.

Example. Any vector bundle E can be thought of as a locally free sheaf of holo-
morphic sections. For D a hypersurface defined by s = 0 for s a section of some
line bundle £, we have a short exact sequence

(3) 0=L1'50r—0p—0

For Z C X a codimension r subvariety defined transversely as s~'(0), for s a
section of a rank r vector bundle £, we have a Koszul resolution

r r—1
(4) 0 ANESNE S 2 50x 0,0

For X smooth (proper?), coherent sheaves always have a finite resolution by
vector bundles.

The category of sheaves has both an internal ¢ (which is a sheaf) and an
external Hom (just a group, and in fact the global sections for the former).
A functor F': C — C' is left exact if 0 = A - B - (C - 0 = 0 —
F(A) — F(B) — F(C). If the category C has enough injectives (objects such
that Home(—, I) is exact), there are right-derived functors R'F' s.t.

(5) 0— F(A) — F(B) — F(C) — R'F(A) - R'F(B) —» R'F(C) — - -

To compute R'F(A), resolve A by injective objects as 0 — A — I° — ' —
I? — ... we get a complex 0 — F(I°) — F(I') - F([?) — --.. Taking
cohomology gives R'F(A) = Ker (F(I') — F(I'™))/im (F(I*™') — F(IY).
Note that R'F(A) = F(A).

Example. Sheaf cohomology arises as the right derived functor of the global sec-
tion functor, and can be computed by acyclic sheaves (e.g. flasque sheaves).





