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MIRROR SYMMETRY: LECTURE 15 

DENIS AUROUX 

1. Lagrangian Floer Homology (contd) 

Recall first our approaches to CF ∗(L, L) with the A∞ algebraic structure: 

(1) Hamiltonian perturbations CF ∗(L, L) = Λ|L∩φH (L)| 

(2) FOOO: CF ∗(L, L) = C∗(L, Λ) the space of “chains” on L. We have eval­
uation maps evi : M0,k+1(M, L; J, β) L, giving multiplication maps → 

mk(Ck, . . . , C1) = T ω(β)(ev0)∗([M0,k+1(M, L; J, β)]∩ev∗C1 ∩· · ·∩ev∗Ck)1 k

β∈π2(X,L) 

(3) Cornea-Lalonde approach: “clusters”. Pick a Morse function f : L R,→
and set CF ∗(L, L) = Λcrit(f). mk counts “clusters” of J-holomorphic disks 
and gradient flowlines. 

1.1. Disks and Obstruction. We’ve seen that, if L0 or L1 bound holomorphic 
disks, then ∂2 = 0 (the moduli space of index 2 strips has disk bubbling on the �
boundaries in addition to strips). Counting the contribution of disk bubbles gives 
m0 ∈ CF ∗(L, L). In FOOO theory, m0 = � ev∗[M0,1(M, L; J, β)] · T ω(β). Aβ=0 

bubble on the boundary of the disk on L1 is m2(m0, p), for p ∈ CF ∗(L0, L1), 
m0 ∈ CF ∗(L1, L1). Hence m0 is the obstruction to ∂2 = 0. More generally, A∞ ­
equations still hold if we include the terms mk( , m0, ), which we can inter­· · · · · · 
pret as disks with k + 1 marked points developing disk bubbles on the boundary. 
This is called a “curved A∞-category”. We say that L is unobstructed if m0 = 0, 
and weakly unobstructed if m0 ∈ Λ.1L, where 1L is the fundamental chain [L]. 
This implies centrality, and m2

1 = 0 on CF (L, L). Weakly unobstructed L’s with 
a given “charge” form an honest A∞-category. 

In FOOO, one tries to cancel the obstruction by a formal deformation b ∈
CF 1(L, L). For � = d + b on CF ∗(L, L), write 

(1) mk
b (Ck, . . . , C1) = mk+�(b . . . b, ck, b . . . b, . . . , b . . . b, c1, b b)· · · 

This is still a curved A∞-algebra, and we look for b, s.t. mb = m0 + m1(b) + 0 
m2(b, b) + = 0. Such a b is called a “bounding cochain”. One can similarly · · · 
define weakly bounding cochains, and define our obmjects to be equivalence 
classes of pairs (L, b) for b a weakly bounding cochain. 

1 



� � 

2	 DENIS AUROUX 

1.2. Coherent Sheaves on a Complex Manifold. Let X be a complex man­
ifold, OX the sheaf of holomorphic functions on X. Recall that a coherent sheaf 
F is a sheaf of OX -modules s.t. 

•	F is of finite type, i.e. there is an open cover by affines Ui s.t. FUi is 
generated by a finite number of sections, i.e. ∃ surjective maps OX |⊕n →Ui 

Ui .F|	
⊕n •	 For all U ⊂ X open, φ : OX | → F|U a homomorphism of OX -module, U 

Ker φ is of finite type. 
If X is nice enough, F has finite presentation, i.e. ∃ an open cover s.t. there is 
an exact sequence 

X U X U U(2)	 O⊕r| → O⊕n| → F| → 0 

i.e. a coherent sheaf is the cokernel of a morphism of vector bundles. Coherent 
sheaves form an abelian category, i.e. they contain kernels and cokernels. 

Example. Any vector bundle E can be thought of as a locally free sheaf of holo­
morphic sections. For D a hypersurface defined by s = 0 for s a section of some 
line bundle L, we have a short exact sequence 

s
(3)	 0 → L−1 → OX → OD → 0 

For Z ⊂ X a codimension r subvariety defined transversely as s−1(0), for s a 
section of a rank r vector bundle E , we have a Koszul resolution 

r r−1
s s s s(4) 0 → E∗ → E∗ → · · · → E∗ → OX → OZ → 0 

For X smooth (proper?), coherent sheaves always have a finite resolution by 
vector bundles. 

The category of sheaves has both an internal H (which is a sheaf) and an 
external Hom (just a group, and in fact the global sections for the former). 
A functor F is left exact if 0 A B C 0 = 0:	 C → C � → → → → ⇒ →
F (A) F (B) F (C). If the category C has enough injectives (objects such → →
that HomC (−, I) is exact), there are right-derived functors RiF s.t. 

(5) 0 F (A) F (B) F (C) R1F (A) R1F (B) R1F (C)→ → → → → → → · · · 

To compute RiF (A), resolve A by injective objects as 0 A I0 I1 → → → →
I2 we get a complex 0 F (I0) F (I1) F (I2) Taking → · · · ,	 → → → → · · · . 
cohomology gives RiF (A) = Ker (F (I i) F (I i+1))/im (F (I i−1) F (I i)). 
Note that R0F (A) = F (A). 

→ → 

Example. Sheaf cohomology arises as the right derived functor of the global sec­
tion functor, and can be computed by acyclic sheaves (e.g. flasque sheaves). 




