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Chapter 10


Introduction to Minimal 

Surfaces I 

10.1	 Calculating the Gauss Map using Coor­

dinates 

Last time, we used the differential of the Gauss map to define several inter­

esting features of a surface — mean curvature H, Gauss curvature K, and 

principal curvatures k1 and k2. We did this using relatively general state­

ments. Now we will calculate these quantities in terms of the entries gij and 

bij of the two fundamental form matrices. (Note that do Carmo still uses 

E, F , G, and e, f , g here respectively.) Don’t forget that the terms gij 

and bij(N) can be calculated with just a bunch of partial derivatives, dot 

products, and a wedge product — the algebra might be messy but there’s no 

creativity required. 

a12	 ∂x Let dNp	 = 
a11 

in terms of the basis {∂x of Tp(S). Now, 
∂u

, 
∂v 
}

a21 a22 

∂N ∂x ∂x ∂x = a11 ∂u 
+ a21 ∂v 

; so 
〈

∂N =
〉 
a11g11 + a21g12. But by a proof from last 

∂u ∂u 
, 

∂u
, 

time, 
〈

∂N ∂x x 
〉 

∂u 
, 

∂u
, =

〉 
−

〈
N, ∂

2

= b11(N). So −b11(N) = a11g11 + a21g12.∂u2 , −
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[ ] 

] 

Three more similar calculations will show us that 

−
[
bij (N)

] 
= 

[
aij 

][
gij 

] 

If we recall that the Gaussian curvature K = k1k2 is the determinant 

of dNp = 
(
aij 

)
, then we can see that det

[
bij (N)

] 
= K det

[
gij 

]−1 
, so that 

b11(N)b22(N)−b12(N)2 K = 2 . 
g11g22−g12 

If we solve the matrix equality for the matrix of aij , we get that 

1 g12b12(N) − g22b11(N) g12b22(N) − g22b12(N)[
aij 

] 
= 

det G g12b11(N) − g11b12(N) g12b12(N) − g11b22(N) 

We recall that −k1 and −k2 are the eigenvalues of dNp. Thus, for 

some nonzero vector vi, we have that dNp(vi) = −kivi = −kiIvi. Thus [
a11 + ki a12 

maps some nonzero vector to zero, so its determinant 
a21 a22 + ki 

must be zero. That is, k2 + ki(a11 + a22) + a11a22 − a21a12 = 0; both i 

k1 and k2 are roots of this polynomial. Now, for any quadratic, the co­

efficient of the linear term is the opposite of the sum of the roots. So 
1

2 
(a11 + a22) = 1 b11(N)g22−2b12(N)g12+b22(N)g11 

2H = 
2 
(k1 + k2) = −1 . (This is 

2 g11g22−g12 

going to be the Really Important Equation.) 

Last, we find the actual values k1 and k2. Remembering that the constant 

term of a quadratic is the product of its roots and thus K, which we’ve already 

calculated, we see that the quadratic we have is just ki 
2 − 2Hki + K = 0; this 

has solutions ki = H ±
√

H2 − K. 

As an exercise, calculate the mean curvature H of the helicoid x(uv) = 

(v cos u, v sin u, cu). (This was in fact a homework problem for today, but 

work it out again anyway.) 
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10.2 Minimal Surfaces 

Since the bij(N) are defined as the dot product of N and something indepen-
b11(N)g22−2b12(N)g12+b22(N)g11 dent of N , they are each linear in N . So H(N) = 1 

22 g11g22−g12 

is also linear in N . We can actually consider mean curvature as a vector H 

instead of as a function from N to a scalar, by finding the unique vector H 

such that H(N) = H N . I’m pretty sure that this is more interesting when · 
we’re embedded in something higher than R3 . 

We define a surface where H = 0 everywhere to be a minimal surface. 

Michael Nagle will explain this choice of name next time. You just calculated 

that the helicoid is a minimal surface. So a surface is minimal iff g22b11(N) + 

g11b22(N) − 2g12b12(N) = 0. 

Another example of a minimal surface is the catenoid: x(u, v) = (cosh v cos u, cosh v sin u, v). 

(We’ve looked at this in at least one homework exercise.) We calculate ∂x = 
∂u 

(− cosh v sin u, cosh v cos u, 0) and ∂x = (sinh v cos u, sinh v sin u, 1), so that ] ∂v 

∂x 
[
gij

] 
= 

[
cosh2 v 0 

. Next, ∂x 
∂v 

= (cosh v cos u, cos v sin u, − cosh v sinh v), 
0 cosh2 v ∂u

∧

with norm cosh2 v. So Np = 
( 

cos u sin u , − tanh v
)
.

cosh v 
, 

cosh v 

xTaking the second partials, ∂2x = (− cosh v cos u, − cosh v sin u, 0), ∂2

= 
∂u2 ∂v2 

∂2x(cosh v cos u, cosh v sin u, 0), and 
∂u∂v 

= (− sinh v sin u, sinh v cos u, 0). So [
0
]

[
bij(N)

] 
= 

−1 
. Finally, the numerator of H is g22b11(N) + g11b22(N) −

0 1 

2g12b12(N) = − cosh2 v + cosh2 v − 0 = 0. So the catenoid is a minimal 

surface. In fact, it’s the only surface of rotation that’s a minimal surface. 

(Note: there are formulas in do Carmo for the second fundamental form of 

a surface of rotation on page 161, but they assume that the rotating curve 

is parametrized by arc length, so they’ll give the wrong answers for this 

particular question.) 

Why is it the only one? Say we have a curve y(x) = f(x) in the xy-plane 

Let S be the surface of rotation around the x-axis from this. We can show 

that the lines of curvature of the surface are the circles in the yz-plane and 
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1the lines of fixed θ. We can show that the first have curvature 1 ,1y (1+(y ′ )2) 2 
′′ 

and the second have the same curvature as the graph y, which is y 
3 . 

(1+(y ′ )2) 2 
′ ′′ d2ySo H is the sum of these: 1+(y )2−yy 

3 . So this is 0 if 1 + 
(

dy 
)2 − y 

dx2 = 0. 
2y(1+(y ′ )2) 2 x 

dy dp dp dy dp If we let p = 
dx 

, then d2y = = 
dy dx 

= p
dy 

. So our equation becomes 
dx2 dx


dp
1 + p2 − yp = 0, or 
1+

p
p2 dp = 1 dy. Integrating, we get 1 

2 
log(1 + p2) = 

dy 

2 dy 2log y + C, so that y = C0

√
1 + p

y 

. Then p = 
dx 

= 
√

cy − 1, so that 
dy cy √
cy2−1 

= dx. Integrating (if you knew this!), you get cosh−1 

= x + k, which 
c 

is to say that y = c cosh x+l . Whew! 
c 
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