
Chapter 11

Introduction to Minimal

Surface II

11.1 Why a Minimal Surface is Minimal (or

Critical)

We want to show why a regular surface im(x) = S with mean curvature

H = 0 everywhere is called a minimal surface – i.e., that this is the surface

of least area among all surfaces with the same boundary γ (and conversely,

that a surface that minimizes area (for a given boundary γ) has H = 0

everywhere.) To do this we first use normal variations to derive a formula

for the change in area in terms of mean curvature, and then as an application

of our formula we find that a surface has minimal area if and only if it has

mean curvature 0.

Let D be the domain on which x is defined, and let γ be a closed curve

in D which bounds a subdomain △. (This is the notation used in Osserman,

p. 20 - 23.) We choose a differentiable function N(u) (here u = (u1, u2) is a

point in our domain D) normal to S at u, i.e.,
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N(u) · δx

δui

= 0. (11.1)

Differentiating yields

δN

δuj

· δx

δui

= −N · δ2

δuiδuj

= −bij(N). (11.2)

Now let h(u) be an arbitrary C2 function in D, and for every real number

λ let the surface Sλ be given by

Sλ : y(u) = x(u) + λh(u)N(u) (11.3)

y is called a normal variation of x – since we are varying the surface

x via the parameter λ along the direction of our normal N. Letting A(λ)

denote the area of the surface Sλ, we will show that:

Theorem 11.1.1. A′(0) = −2
∫ ∫

S
H(N)h(u)dA,

where the integral of f with respect to surface area on S is defined as

∫ ∫

S

f(u)dA =

∫ ∫

△

f(u)
√

det gijdu1du2 (11.4)

(A′(0) denotes the derivative with respect to λ.)

Proof. Differentiating y with repsect to the domain coordinates ui, we get

δy

δui

=
δx

δui

+ λ(h
δN

δui

+
δh

δui

N) (11.5)

If we let gλ
ij denote the entries of the first fundamental form for the surface

Sλ, we get

gλ
ij =

δy

δui

· δy

δuj

= gij − 2λhbij(N) + λ2cij (11.6)

where cij is a continuous function of u in D.

64



Then we have

det(gλ
ij) = ao + a1λ + a2λ

2 (11.7)

with a0 = det gij, a1 = −2h(g11b22(N) + g22b11(N) − 2g12b12(N)), and a2

is a continuous function in u1, u2, and λ.

Because S is regular, and the determinant function is continuous, we

know that a0 has a positive minimum on cl(△) (the closure of △.) Then we

can find an ǫ such that |λ| < ǫ means that det(gλ
ij) > 0 on cl(△). Thus, for

a small enough ǫ, all surfaces Sλ restricted to △ are regular surfaces.

Now, looking at the Taylor series expansion of the determinant function,

we get, for some positive constant M ,

|
√

(det(gλ
ij) − (

√
a0 +

a1

2
√

a1

)λ| < Mλ2 (11.8)

Then, using the formula for the area of a surface, we have that the area

of our original surface S,A(0) =
∫ ∫

△

√
a0du1du2.

Integrating the equation with an M in it, we get

|A(λ) − A(0) − λ

∫ ∫

△

a1

2
√

a0

du1du2| < M1λ
2 (11.9)

|A(λ) − A(0)

λ
−

∫ ∫

△

a1

2
√

a0

du1du2| < M1λ. (11.10)

Letting λ go to 0, and using H(N) = g22b11(N)+g11b22(N)−2g12b12(N)
2 det(gij)

, we get

A′(0) = −2

∫ ∫

△

H(N)h(u)
√

det gijdu1du2(∗) (11.11)

or when integrating with respect to surface area

A′(0) = −2

∫ ∫

△

H(N)h(u)dA (11.12)
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From here it is clear that if H(N) is zero everywhere, then A′(0) is zero,

and thus we have a critical point (hence minimal surfaces being misnamed:

we can only ensure that A has a critical point by setting H(N) to zero

everywhere.) Now we show the converse:

Corollary 11.1.2. If S minimizes area, then its mean curvature vanishes

everywhere.

Proof. : Suppose the mean curvature doesn’t vanish. Then there’s some

point a and a normal N(a) where H(N) 6= 0 (we can assume H(N) > 0

by choosing an appropriately oriented normal.) Then, with Lemma 2.2 from

Osserman, we can find a neighborhood V1 of a where N is normal to S. This

implies that there’s a smaller neighborhood V2 contained in V1 where the

mean curvature H(N) is positive. Now choose a function h which is positive

on V2 and 0 elsewhere. Then the integral in (*) is strictly positive, and thus

A′(0) is strictly negative.

If V2 is small enough (contained in △), then on the boundary γ, x(u) =

y(u) for the original surface S and a surface Sλ respectively. Assuming that

S minimizes area says that for all λ, A(λ) ≥ A(0), which implies A′(0) = 0

which is a contradiction since A′(0) was just shown to be strictly negative.

11.2 Complex Functions

Working in C is way different than working in just R
2. For example: a

complex function of a complex variable (i.e., f : C → C) is called analytic if

it is differentiable, and it can be shown that any analytic function is infinitely

differentiable! It’s pretty crazy.

I don’t think we’re going to show that in this class, though. But let’s talk

about derivatives of complex functions. They’re defined in the same way as

for real functions, i.e. the derivative of a function f (with either a real or

complex variable x) at a point a is
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lim
x→a

f(x) − f(a)

x − a
. (11.13)

These derivatives work like we expect them to (things like the product

rule, quotient rule, and chain rule are still valid.) But, there is a fundamental

difference between considering a real variable and a complex variable.

Exercise 4. Let f(z) be a real function of a complex variable (f : C → R.)

What can we say about f ′(a) for any point a?

11.3 Analytic Functions and the Cauchy-Riemann

Equations

So we defined earlier what an analytic function was, but I’ll restate it here:

Definition 11.3.1. A function f : C → C is called analytic (or holomor-

phic, equivalently) if its first derivative exists where f is defined.

We can also represent a complex function f by writing f(z) = u(z)+iv(z),

where u and v are real-valued.

When we look at the derivative of f at a :

lim
h→0

f(a + h) − f(a)

h
(11.14)

we know that the limit as h approaches 0 must agree from all directions.

So if we look at f ′(a) as h approaches 0 along the real line (keeping the

imaginary part of h constant), our derivative is a partial with respect to x

and we get:

f ′(z) =
δf

δx
=

δu

δx
+ i

δv

δx
(11.15)

Similarly, taking purely imaginary values for h, we get that
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f ′(z) = lim
k→0

f(z + ik) − f(z)

k
= −i

δf

δy
= −i

δu

δy
+

δv

δy
(11.16)

So we get that

δf

δx
= −i

δf

δy
(11.17)

and comparing real parts and imaginary parts,

δu

δx
=

δv

δy
,
δu

δy
= −δv

δx
(11.18)

These are the Cauchy-Riemann equations, and any analytic function

must satisfy them.

11.4 Harmonic Functions

We assume that the functions u and v (given some analytic f = u + iv)

have continuous partial derivatives of all orders, and that the mixed partials

are equal (this follows from knowing the derivative of an analytic function is

itself analytic, as raved about earlier.) Then, using equality of mixed partials

and the Cauchy-Riemann equations we can show that:

∆u =
δ2u

δx2
+

δ2u

δy2
= 0 (11.19)

and

∆v =
δ2v

δx2
+

δ2v

δy2
= 0 (11.20)

Defining any function f which satisfies Laplace’s equation ∆f = 0 to be

harmonic, we get that the real and imaginary parts of an analytic function

are harmonic.

Conversely, say we have two harmonic funcions u and v, and that they

satisfy the Cauchy-Riemann equations (here v is called the conjugate har-
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monic function of u.) We want to show that f = u + iv is analytic. This

is done in the next lecture (Kai’s Monday 10/18 lecture!)
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