Chapter 12

Review on Complex Analysis I

Reading: Alfors [1]:

- Chapter 2, 2.4, 3.1-3.4
- Chapter 3, 2.2, 2.3
- Chapter 4, 3.2
- Chapter 5, 1.2

12.1 Cutoff Function

Last time we talked about cutoff function. Here is the way to construct one on \mathbb{R}^n [5].

Proposition 12.1.1. Let A and B be two disjoint subsets in \mathbb{R}^m , A compact and B closed. There exists a differentiable function φ which is identically 1 on A and identically 0 on B

Proof. We will complete the proof by constructing such a function.

Let 0 < a < b and define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \left\{ \begin{array}{cc} \exp\left(\frac{1}{x-b} - \frac{1}{x-a}\right) & \text{if } a < x < b \\ 0 & \text{otherwise.} \end{array} \right\}$$
 (12.1)

It is easy to check that f and the function

$$F(x) = \frac{\int_x^b f(t) dt}{\int_a^b f(t) dt}$$
 (12.2)

are differentiable. Note that the function F has value 1 for $x \leq a$ and 0 for $x \geq b$. Thus, the function

$$\psi(x_1, \dots, x_m) = F(x_1^2 + \dots + x_m^2)$$
(12.3)

is differentiable and has values 1 for $x_1^2+\ldots+x_m^2\leq a$ and 0 for $x_1^2+\ldots+x_m^2\geq b$.

Let S and S' be two concentric spheres in $\mathbb{R}^m,\,S'\subset S.$ By using ψ and

linear transformation, we can construct a differentiable function that has value 1 in the interior of S' and value 0 outside S.

Now, since A is compact, we can find finitely many spheres $S_i (1 \le i \le n)$ and the corresponding open balls V_i such that

$$A \subset \bigcup_{i=1}^{n} V_i \tag{12.4}$$

and such that the closed balls \bar{V}_i do not intersect B.

We can shrink each S_i to a concentric sphere S'_i such that the corresponding open balls V'_i still form a covering of A. Let ψ_i be a differentiable function on \mathbb{R}^m which is identically 1 on B'_i and identically 0 in the complement of V'_i , then the function

$$\varphi = 1 - (1 - \psi_1)(1 - \psi_2)\dots(1 - \psi_n) \tag{12.5}$$

is the desired cutoff function.

12.2 Power Series in Complex Plane

In this notes, z and a_i 's are complex numbers, $i \in \mathbb{Z}$.

Definition 12.2.1. Any series in the form

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots + a_n (z - z_0)^n + \dots$$
 (12.6)

is called power series.

Without loss of generality, we can take z_0 to be 0.

Theorem 12.2.2. For every power series 12.6 there exists a number R, $0 \le R \le \infty$, called the radius of convergence, with the following properties:

- 1. The series converges absolutely for every z with |z| < R. If $0 \le \rho \le R$ the convergence is uniform for $|z| \le \rho$.
- 2. If |z| > R the terms of the series are unbounded, and the series is consequently divergent.
- 3. In |z| < R the sum of the series is an analytic function. The derivative can be obtained by termwise differentiation, and the derived series has the same radius of convergence.

Proof. The assertions in the theorem is true if we choose R according to the Hadamard's formula

$$\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$$
 (12.7)

The proof of the above formula, along with assertion (1) and (2), can be found in page 39 of Alfors.

For assertion (3), first I will prove that the derived series $\sum_{1}^{\infty} n a_n z^{n-1}$ has the same radius of convergence. It suffices to show that

$$\lim_{n \to \infty} \sqrt[n]{n} = 1 \tag{12.8}$$

Let $\sqrt[n]{n} = 1 + \delta_n$. We want to show that $\lim_{n\to\infty} \delta_n = 0$. By the binomial theorem,

$$n = (1 + \delta_n)^n > 1 + \frac{1}{2}n(n-1)\delta_n^2$$
(12.9)

which gives

$$\delta_n^2 < \frac{2}{n} \tag{12.10}$$

and thus

$$\lim_{n \to \infty} \delta_n = 0 \tag{12.11}$$

Let us write

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = s_n(z) + R_n(z)$$
 (12.12)

where

$$s_n(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1}$$
(12.13)

is the partial sum of the series, and

$$R_n(z) = \sum_{k=n}^{\infty} a_k z^k \tag{12.14}$$

is the remainder of the series. Also let

$$f_1(z) = \sum_{n=1}^{\infty} n a_n z^{n-1} = \lim_{n \to \infty} s'_n(z).$$
 (12.15)

If we can show that $f'(z) = f_1(z)$, then we can prove that the sum of the series is an analytic function, and the derivative can be obtained by termwise differentiation.

Consider the identity

$$\frac{f(z) - f(z_0)}{z - z_0} - f_1(z_0) = \left(\frac{s_n(z) - s_n(z_0)}{z - z_0} - s'_n(z_0)\right) + \left(s'_n(z_0) - f_1(z_0)\right) + \left(\frac{R_n(z) - R_n(z_0)}{z - z_0}\right)$$
(12.16)

and assume $z \neq z_0$ and $|z|, |z_0| < \rho < R$. The last term can be rewritten as

$$\sum_{k=n}^{\infty} a_k (z^{k-1} + z^{k-2} z_0 + \dots + z z_o^{k-2}) = z_0^{k-1}, \tag{12.17}$$

and thus

$$\left| \frac{R_n(z) - R_n(z_0)}{z - z_0} \right| \le \sum_{k=n}^{\infty} k |a_k| \rho^{k-1}$$
 (12.18)

Since the left hand side of the inequality is a convergent sequence, we can find n_0 such that for $n \ge n_0$,

$$\left| \frac{R_n(z) - R_n(z_0)}{z - z_0} \right| < \frac{\epsilon}{3}. \tag{12.19}$$

From Eq. 12.15, we know that there is also an n_1 such that for $n \ge n_1$,

$$|s_n'(z_0) - f_1(z_0)| < \frac{\epsilon}{3}. \tag{12.20}$$

Now if we choose $n \geq n_0, n_1$, from the definition of derivative we can find $\delta > 0$ such that $0 < |z - z_0| < \delta$ implies

$$\left| \frac{s_n(z) - s_n(z_0)}{z - z_0} - s_n'(z_0) \right| < \frac{\epsilon}{3}. \tag{12.21}$$

Combining Eq. 12.19, 12.20 and 12.21, we have for $0 < |z - z_0| < \delta$

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f_1(z_0) \right| < \epsilon \tag{12.22}$$

Thus, we have proved that $f'(z_0)$ exists and equals $f_1(z_0)$.

12.3 Taylor Series

Note that we have proved that a power series with positive radius of convergence has derivatives of all orders. Explicitly,

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots (12.23)$$

$$f'(z) = z_1 + 2a_2z + 3a_3z^2 + \dots ag{12.24}$$

$$f''(z) = 2a_2 + 6a_3z + 12a_4z^2 + \dots (12.25)$$

$$f^{(k)}(z) = k! a_k + \frac{(k+1)!}{1!} a_{k+1} z + \frac{(k+2)!}{2!} a_{k+2} z^2 + \dots$$
 (12.27)

Since $a_k = f^{(k)}(0)/k!$, we have the Taylor-Maclaurin series:

$$f(z) = f(0) + f'(0)z + \frac{f''(0)}{2!}z^2 + \dots + \frac{f^{(n)}(0)}{n!}z^n + \dots$$
 (12.28)

Note that we have proved this only under the assumption that f(z) has a power series development. We did not prove that every analytic function has a Taylor development, but this is what we are going to state without proof. The proof can be found in Chapter 4, Sec. 3.1 of [1].

Theorem 12.3.1. If f(z) is analytic in the region Ω , containing z_0 , then the representation

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots + \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n + \dots$$
(12.29)

is valid in the largest open disk of center z_0 contained in Ω .

12.3.1 The Exponential Functions

We define the *exponential function* as the solution to the following differential equation:

$$f'(z) = f(z) \tag{12.30}$$

with the initial value f(0) = 1. The solution is denoted by e^z and is given by

$$e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots$$
 (12.31)

Since $R = \limsup_{n \to \infty} \sqrt[n]{n!}$, we can prove that the above series converges if

$$\lim_{n \to \infty} \sqrt[n]{n!} = \infty \tag{12.32}$$

Proposition 12.3.2.

$$e^{a+b} = e^a e^b (12.33)$$

Proof. Since $D(e^z \cdot e^{c-z}) = e^z \cdot e^{c-z} + e^z \cdot (-e^{c-z}) = 0$, we know that $e^z \cdot e^{c-z}$ is a constant. The value can be found by putting z = 0, and thus $e^z \cdot e^{c-z} = e^c$. Putting z = a and c = a + b, we have the desired result.

Corollary 12.3.3. $e^z \cdot e^{-z} = 1$, and thus e^z is never 0.

Moreover, if z = x + iy, we have

$$|e^{iy}|^2 = e^{iy}e^{-iy} = 1 (12.34)$$

and

$$|e^{x+iy}| = |e^x|. (12.35)$$

12.3.2 The Trigonometric Functions

We define

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 (12.36)

In other words,

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots, \tag{12.37}$$

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$$
 (12.38)

From Eq. 12.36, we can obtain the Euler's equation,

$$e^{iz} = \cos z + i\sin z \tag{12.39}$$

and

$$\cos^2 z + \sin^2 z = 1 \tag{12.40}$$

From Eq. 12.39, we can directly find

$$D\cos z = -\sin z, \quad D\sin z = \cos z \tag{12.41}$$

and the additions formulas

$$\cos(a+b) = \cos a \cos b - \sin a \sin b \tag{12.42}$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b \tag{12.43}$$

12.3.3 The Logarithm

The logarithm function is the inverse of the exponential function. Therefore, $z = \log w$ is a root of the equation $e^z = w$. Since e^z is never 0, we know that the number 0 has no logarithm. For $w \neq 0$ the equation $e^{x+iy} = w$ is equivalent to

$$e^x = |w|, \quad e^{iy} = \frac{w}{|w|}$$
 (12.44)

The first equation has a unique solution x = log|w|, the real logarithm of |w|. The second equation is a complex number of absolute value 1. Therefore, one of the solution is in the interval $0 \le y < 2\pi$. Also, all y that differ from this solution by an integral multiple of 2π satisfy the equation. Therefore, every complex number other that 0 has infinitely many logarithms which differ from each other by multiples of $2\pi i$.

If we denote $\arg w$ to be the imaginary part of $\log w$, then it is interpreted as the angle, measured in radians, between the positive real axis and the half line from 0 through the point w. And thus we can write

$$\log w = \log |w| + i \arg w \tag{12.45}$$

The addition formulas of the exponential function implies that

$$\log(z_1 z_2) = \log z_1 + \log z_2 \tag{12.46}$$

$$\arg(z_1 z_2) = \arg z_1 + \arg z_2 \tag{12.47}$$

12.4 Analytic Functions in Regions

Definition 12.4.1. A function f(z) is analytic on an arbitrary point set A if it is the restriction to A of a function which is analytic in some open set containing A.

Although the definition of analytic functions requires them to be single-

valued, we can choose a definite region such that a multiple-valued function, such as $z^{1/2}$, is single-valued and analytic when restricted to the region. For example, for the function $f(z) = z^{1/2}$, we can choose the region Ω to be the complement of the negative real axis. With this choice of Ω , one and only one of the values of $z^{1/2}$ has a positive real part, and thus f(z) is a single-valued function in Ω . The proof of continuity and differentiability of f(z) is in [1] and thus omitted.

12.5 Conformal Mapping

Let γ be an arc with equation $z=z(t), t\in [-\epsilon,\epsilon]$ contained in region Ω with z(0)=p. Let f(z) be a continuous function on Ω . The equation w=w(t)=f(z(t)) defines an arc β in the w-plane which we call it the image of γ .

We can find w'(0) by

$$w'(0) = f'(p)z'(0). (12.48)$$

The above equation implies that

$$\arg w'(0) = \arg f'(p) + \arg z'(0). \tag{12.49}$$

In words, it means that the angle between the directed tangents to γ at p and to β and f(p) is equal to $\arg f'(p)$, and thus independent of γ . Consequently, curves through p which are tangent to each other are mapped onto curves with a common tangent at f(p). Moreover, two curves which form an angle at p are mapped upon curves forming the same angle. In view of this, we call the mapping f to be conformal at all points with $f'(z) \neq 0$.

12.6 Zeros of Analytic Function

The goal of this section is to show that the zeros of analytic functions are isolated.

Proposition 12.6.1. If f is an analytic function on a region Ω and it does not vanish identically in Ω , then the zeros of f are isolated.

Proof. Remember that we have assumed in 12.3 that every function f that is analytic in the region Ω can be written as

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots + \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n + \dots$$
(12.50)

Let E_1 be the set on which f(z) and all derivatives vanish at $z_0 \in \mathbb{C}$ and E_2 the set on which the function or one of the derivatives evaluated at z_0 is different from zero. When f(z) and all derivatives vanish at z_0 , then f(z) = 0 inside the whole region Ω . Thus, E_1 is open. E_2 is open because the function and all derivatives are continuous. Since Ω is connected, we know that either E_1 or E_2 has to be empty. If E_2 is empty, then the function is identically zero. If E_1 is empty, f(z) can never vanish together with all its derivatives.

Assume now that f(z) is not identically zero, and $f(z_0) = 0$. Then there exists a first derivative $f^{(h)}(z_0)$ that is not zero. We say that a is a zero of f of order h. Moreover, it is possible to write

$$f(z) = (z - z_0)^h f_h(z)$$
(12.51)

where $f_h(z)$ is analytic and $f_h(z_0) \neq 0$.

Since $f_h(z)$ is continuous, $f_h(z) \neq 0$ in the neighbourhood of z_0 and $z = z_0$ is the unique zero of f(z) in the neighborhood of z_0 .

Corollary 12.6.2. If f(z) and g(z) are analytic in Ω , and if f(z) = g(z) on a set which has an accumulation point in Ω , then f(z) is identically equal to g(z).

Proof. Consider the difference f(z) - g(z) and the result from Proposition 12.6.1.