Chapter 15

Bernstein’s Theorem

15.1 Minimal Surfaces and isothermal parametriza-

tions

Note: This section will not be gone over in class, but it will be referred to.

Lemma 15.1.1 (Osserman 4.4). Let S be a minimal surface. Every reqular
point p of S has a neighborhood in which there exists of reparametrization of

S in terms of isothermal parameters.

Proof. By a previous theorem (not discussed in class) there exists a neighbor-

hood of the regular point which may be represented in a non-parametric form.

Then we have that z(xy,22) = (v1, 29, f3(x1,22), ..., fu(z1,22)). Defining
0 0 92 92 ot
f:(f3,f4,...,fn),weletp:a—jl,q: a—é,r:a—éﬁ: axlgxz,andtza—é.

Last, we let W = \/detg;; = /1+ [p]> + |g]* + [p[*l¢]> — (p- ¢)>. We then

have (from last lecture)
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1+|p|? and 9F — r4a

w Oxo w -
Why? Think back to 18.02 and let V' = (M 249.0) be a vector field in R?;

W W
1 2 . . .
0 4 9 pa _ () g0 there exists a function F such that
Ore W oxr1 W )

v F =V, which is the exact condition we wanted (once we get rid of the

Then there exists a function F(zq, z2) such that g—fl =

then |7 xV| =

third dimension). Similarly there exists a function G(x1,x2) with g—xGl =H
and 96 — 91+l
O0rs ~  OW
We now define &(xq, x9) (21 + F (21, 22), 22+ G(21,25)). We then find that
o 1+|p]®>  a 1+|q|? 3} ) . .
8—2 =1+ —ﬂfl , a—ii =1+ —uf‘ , and a—i = 8_521 = B Then (recalling the

defintion of W?) we can find that the magnitude of the Jacobian ‘g((il—fj)) is

2+ W > (. This implies that the transformation £ has a local inverse &
at p. Judicial use of the inverse function theorem will show that with respect
to the parameters & and &, g11 = goo and g5 = 0, so these are isothermal

coordinates; see Osserman p 32 for details. O
We also have the following result:

Lemma 15.1.2 (Osserman 4.5). Let a surface S be defined by an isother-
mal parametrization x(u), and let S be a reparametrization of S defined by
a diffeomorphism with matrix U. Then uy, us are isothermal parameters if

and only if the map U 1is either conformal or anti-conformal.

Proof. For a map to be conformal or anti-conformal means that it preserves
|0], or alternatively that it preserves cosf. (It also needs to be continuous

enough that it isn’t flipping the sign back and forth.) If U is a constant

p times an orthogonal matrix, then plv| = |Uv| for all v since p? (v,v) =
(Uv, Uv); thus if 0 is the angle between vectors v and w and @' is the angle
between Uv and Uw, we have that cosf = Z zfsuﬁ = fg;’HUszj‘ = cosf'. So

for diffeomorphisms with matrix U, U being conformal or anti-conformal is
equivalent to U being a constant multiple of an orthogonal matrix.

Now, since x is isothermal, we have that g;; = )\2(5,-j (where d;; is the
Kronecker delta). By a theorem on page 5 about change of coordinates, we
know that G = UTGU = N2UTU. So 4, 4y is isothermal iff Gij = A0y,
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which is to say that I = i—zUTU, which is to say that éU is orthogonal.
But we have already shown that this is equivalent to U being conformal or

anti-conformal. O

15.2 Bernstein’s Theorem: Some Preliminary

Lemmas

The main goal of today is to prove Bernstein’s Theorem, which has the
nice corollary that in R?®, the only minimal surface that is defined in non-
parametric form on the entire x1, x5 plane is a plane. This makes sense: the
catenoid and helicoid are not going to give you nonparametric forms since no
projection of them is injective, and Scherk’s surface may be nonparametric
but it’s only defined on a checkerboard. We have a bunch of lemmas to work
through first.

Lemma 15.2.1 (Osserman 5.1). Let E: D — R be a C? function on a

conver domain D, and suppose that the Hessian matrix <63?£_) evaluated at
10T

any point is positive definite. (This means that the quadratic form it defines

sends every nonzero vector to a positive number, or equivalently that it is
symmetric with positive eigenvalues.) Define a mapping ¢: D — R? with
O(z1,x0) = (gﬁ (xl,xQ),g—x]”;(ml,xQ)) (since g—fl: D — R). Let a and b be

distinct points of D; then (b — a) - (¢(b) — ¢(a)) > 0.

Proof. Let G(t) = E(tb+ (1 — t)a) = E(tby + (1 — t)ay, thy + (1 — t)bs) for
t € [0,1]. Then

Z((%Z (tb+ (1 —t)a )) (b; — a;)

=1
(note that the tb + (1 — t)a here is the argument of g—g, not a multiplied
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factor) and

2

=3 ( Tt (1= t)a)) (b — )by — )

1,j=1

But this is just the quadratic form of < P F ) evaluated at the point tb +

Ox;0x;
(1 — t)a, applied to the nonzero vector b — a. By positive definiteness, we

have that G”(t) > 0 for ¢ € [0,1]. So G'(1) > G'(0), which is to say that

> 0()i(bi—a;) > - ¢(a)i(bi—a;), which is to say that (¢(b) —¢(a))-(b—a) >
0. O]

Lemma 15.2.2 (Osserman 5.2). Assume the hypotheses of Osserman
Lemma 5.1. Define the map z: D — R? by z;(x1, x9) = x; + @3 (w1, 22). Then
given distinct points a,b € D, we have that (2(b) — 2(a)) - (b —a) > |b — al?,
and |z(b) — z(a)| > |b — al.

Proof. Since z(b) — z(a) = (b—a) + (¢(b) — ¢(a)), we have that (z(b) —z(a)) -
(b—a)=1|b—al*+ (¢(b) — #(a)) - (b —a) > |b — a|? by the previous lemma.

Then |b — al* < [(2(b) — 2(a)) - (b —a)| < |2(b) — z(a)||b — a|, where the
second inequality holds by Cauchy-Schwarz; so |b —a| < |2(b) — z(a)|. O

Lemma 15.2.3 (Osserman 5.3). Assume the hypotheses of Osserman
Lemma 5.2. If D is the disk x? + x5 < R?, then the map z is a diffeo-
morphism of D onto a domain A which includes a disk of radius R around

2(0).

Proof. We know that z is continuously differentiable, since £ € C?. If z(t) is
any differentiable curve in D and z(t) is its image under z, then it follows from
the previous lemma that |2/(t)| > |2/(¢)[; thus the determinant of the matrix dz
(which is to say, the Jacobian) is greater than 1, since 2'(t) = (dz)2/(t) implies
that |2'(t)| = det dz|z'(t)|. So since the Jacobian is everywhere greater than

1, the map is a local diffeomorphism everywhere. It’s also injective (because
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o(b) — ¢(a) = 0 implies that b —a = 0 by the previous lemma), so it’s in fact
a (global) diffeomorphism onto a domain A.

We must show that A includes all points z such that z — 2(0) < R. If
A is the whole plane this is obvious; otherwise there is a point Z in the
complement of A (which is closed) which minimizes the distance to z(0).
Let Z* be a sequence of points in R? — A which approach Z (if this didn’t
exist, we could find a point in R? — A closer to z(0) than Z), and since z is
a diffeomorphism, we let ¥ be the sequence of points mapped onto Z* by z.
The points 2* cannot have a point of accumulation in D, since that would
be mapped by z onto a point of A, and we are assuming that Z ¢ A. But
z* must have an accumulation point in R? in order for their image to; so
|#¥| — R as k — oo; since |Z* — 2(0)| > |2 — 0] by the previous lemma, we
have that |Z — z(0)| > R, so every point within R of z(0) is in A. O

Lemma 15.2.4 (Osserman 5.4). Let f(x1,23) be a non-parametric solution
to the minimal surface equation in the disk of radius R around the origin.
Then the map £ defined earlier is a diffeomorphism onto a domain A which
includes a disk of radius R around &(0).

Proof. 1t follows from the defining characteristics of F' and G that there exists
a function F satisfying g—fl = F and 887]”; = @, for the same reason that F’ and
G exist. Then E € C?, and PF — # > 0, and det @B _ ORG) _ 1

8z 0x;0z; — O(x1,x2)

b
by the definition of W, it’s a simple check). Any matrix ¢ with a > 0
(by y ;

c

and ac — b?> > 0 must have ¢ > 0, so its trace and determinant are both
positive, so the sum and product of its eigenvalues are both positive, so it is
positive definite. So the Hessian of E' is positive definite. We can see that
the mapping z defined in (our version of) Osserman Lemma 5.2 is in this
case the same map as £ defined in (our version of) Osserman Lemma 4.4. So
by Osserman Lemma 5.3, we have that ¢ is a diffeomorphism onto a domain
A which includes a disk of radius R around &(0). O
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Lemma 15.2.5 (Osserman 5.5). Let f: D — R be a C' function. Then
the surface S in R? defined in non-parametric form by x3 = f(x1, f2) lies on
a plane iff there exists a nonsingular linear transformation ¢¥: U — D from

some domain U such that uy, us are isothermal parameters on S.

Proof. Suppose such parameters u;, us exist. Letting ¢r(() = g—ﬁ — zgik, for
1 <k < 3, we see that ¢, and ¢, are constant because x; and x5 are linear
in u; and us. We know from a previous lecture that u; and us are isothermal
parameters iff 22:1 ?3(C) is zero for all ¢, so ¢3 is constant too. (Well, it
implies that ¢2 is constant, which constrains it to at most two values, and
since ¢3 must be continuous, it must be constant.) This means that x3 has
a constant gradient with respect to u;, us and thus also with respect to zy,
x9. This means that we must have f(z1,x2) = Az + Bzy + C; but this is
the equation of a plane.

Conversely, if f(x1, z2) is a part of a plane, then it equals Az, + Bxo+C for
some constants A, B, and C'. Then the map z(uy, us) = (AAuy+ Bug, ABu; —
Aug) with \2 = o A2 5z is isothermal. To check this, we see that ¢; = AA —
iB, ¢ = AB+iA, ¢? = \?A? — B> —2)\ABi, ¢ = \*B%> — A? + 2\ABi. 13 =
Az + By + C = A(MNAu; + Buy) + B(ABu; — Aug) + C, so ¢3 = \(A? + B?)
and ¢ = A\2(A?+ B?)%. Then ¢+ ¢3+¢3 = \2(A?+B?)— (A?+ B+ \?(A%+
B?)? = (A2+ B%)(A\? =1+ \?(A%+ B?)) = (A2 + B)(N*(1+ A*+B?) —1) =
(A% 4+ B?)(1 — 1) = 0, so this is isothermal. O

15.3 Bernstein’s Theorem

Theorem 15.3.1 (Bernstein’s Theorem, Osserman 5.1). Let f(xq,x2)
be a solution of the non-parametric minimal surface equation defined in the
entire x1, x9 plane. Then there exists a nonsingular linear transformation
T, = U1, To = auy+bug with b > 0 such that uy, uy are isothermal parameters

on the entire u-plane for the minimal surface S defined by xy = fi(x1,x2)

(B<k<n).

98



Proof. Define the map & as in our version of Osserman Lemma 4.4. Osserman
Lemma 5.4 shows that this is a diffeomorphism from the entire z-plane onto
the entire {-plane. We know from Osserman Lemma 4.4 that £ is a set of
isothermal parameters on S. By Osserman Lemma 4.3 (which Nizam proved),

the functions ¢ (() = g—?f — ig—?; (1 < k < n) are analytic functions of (.

We can see that 3(¢1¢s) = —%; since this Jacobian is always positive

(see proof of Osserman Lemma 4.4), we can see that ¢; # 0, ¢o # 0, and

that %% = ﬁ%(gﬁlgbg) < 0. So the function % is analytic on the whole

(-plane and has negative imaginary part everywhere. By Picard’s Theorem,

an analytic function that misses more than one value is constant, so % =C

where C' = a — ib. That is ¢o = (a — ib)¢;. The real part of this equation is

0 0 0 : : 0 0 0

aigf = aai&l — bai&l7 and the imaginary part is 8—2 = baigi + aai&l. If we then

apply the linear transformation from the statement of the theorem, using
i Our _ Ouy Oug _ __ Ouy.

the a and b that we have, this becomes o6 = o6 and %6 = o6 the

Cauchy-Reimann equations! So u; + fus is an analytic function of & + i&.

But by Osserman Lemma 4.5, this implies that uy, us are also isothermal

parameters, which proves the theorem. O

This (with Osserman Lemma 5.5) has the immediate corollary that for
n = 3, the only solution of the non-parametric minimal surface equation on
the entire z-plane is surface that is a plane. This gives us a nice way to
generate lots of weird minimal surfaces in dimensions 4 and up by starting
with analytic functions; this is Osserman Corollary 3, but I do not have time

to show this.
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