
Chapter 15

Bernstein’s Theorem

15.1 Minimal Surfaces and isothermal parametriza-

tions

Note: This section will not be gone over in class, but it will be referred to.

Lemma 15.1.1 (Osserman 4.4). Let S be a minimal surface. Every regular

point p of S has a neighborhood in which there exists of reparametrization of

S in terms of isothermal parameters.

Proof. By a previous theorem (not discussed in class) there exists a neighbor-

hood of the regular point which may be represented in a non-parametric form.

Then we have that x(x1, x2) = (x1, x2, f3(x1, x2), . . . , fn(x1, x2)). Defining

f = (f3, f4, . . . , fn), we let p = ∂f
∂x1

, q = ∂f
∂x2

, r = ∂2f
∂x2

1
, s = ∂2f

∂x1∂x2
, and t = ∂tf

∂x2
2
.

Last, we let W =
√

det gij =
√

1 + |p|2 + |q|2 + |p|2|q|2 − (p · q)2. We then

have (from last lecture)

∂

∂x1

(
1 + |q|2

W

)
=

∂

∂x2

(p · q
W

)

∂

∂x1

(p · q
W

)
=

∂

∂x2

(
1 + |q|2

W

)
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Then there exists a function F (x1, x2) such that ∂F
∂x1

= 1+|p|2

W
and ∂F

∂x2
= p·q

W
.

Why? Think back to 18.02 and let V = (1+|p|2

W
, p·q

W
, 0) be a vector field in R

3;

then | ▽×V | = ∂
∂x2

1+|p|2

W
− ∂

∂x1

p·q
W

= 0, so there exists a function F such that

▽F = V , which is the exact condition we wanted (once we get rid of the

third dimension). Similarly there exists a function G(x1, x2) with ∂G
∂x1

= p·q
W

and ∂G
∂x2

= ∂1+|q|2

∂W
.

We now define ξ(x1, x2)(x1 +F (x1, x2), x2 +G(x1, x2)). We then find that
∂ξ1
∂x1

= 1 + 1+|p|2

W
, ∂ξ2

∂x2
= 1 + 1+|q|2

W
, and ∂ξ1

∂x2
= ∂ξ2

∂x1
= p·q

W
. Then (recalling the

defintion of W 2) we can find that the magnitude of the Jacobian ∂(ξ1,ξ2)
∂(x1,x)

is

2+ 2+|p|2+|q|2

W
> 0. This implies that the transformation ξ has a local inverse x̂

at p. Judicial use of the inverse function theorem will show that with respect

to the parameters ξ1 and ξ2, g11 = g22 and g12 = 0, so these are isothermal

coordinates; see Osserman p 32 for details.

We also have the following result:

Lemma 15.1.2 (Osserman 4.5). Let a surface S be defined by an isother-

mal parametrization x(u), and let S̃ be a reparametrization of S defined by

a diffeomorphism with matrix U . Then ũ1, ũ2 are isothermal parameters if

and only if the map U is either conformal or anti-conformal.

Proof. For a map to be conformal or anti-conformal means that it preserves

|θ|, or alternatively that it preserves cos θ. (It also needs to be continuous

enough that it isn’t flipping the sign back and forth.) If U is a constant

µ times an orthogonal matrix, then µ|v| = |Uv| for all v since µ2 〈v, v〉 =

〈Uv, Uv〉; thus if θ is the angle between vectors v and w and θ′ is the angle

between Uv and Uw, we have that cos θ = µ2〈v,w〉
µ2|v||w|

= 〈Uv,Uw〉
|Uv||Uw|

= cos θ′. So

for diffeomorphisms with matrix U , U being conformal or anti-conformal is

equivalent to U being a constant multiple of an orthogonal matrix.

Now, since x is isothermal, we have that gij = λ2δij (where δij is the

Kronecker delta). By a theorem on page 5 about change of coordinates, we

know that G̃ = UT GU = λ2UT U . So ũ1, ũ2 is isothermal iff g̃ij = λ̃2δij,
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which is to say that I = λ2

λ̃2 U
T U , which is to say that λ̃

λ
U is orthogonal.

But we have already shown that this is equivalent to U being conformal or

anti-conformal.

15.2 Bernstein’s Theorem: Some Preliminary

Lemmas

The main goal of today is to prove Bernstein’s Theorem, which has the

nice corollary that in R
3, the only minimal surface that is defined in non-

parametric form on the entire x1, x2 plane is a plane. This makes sense: the

catenoid and helicoid are not going to give you nonparametric forms since no

projection of them is injective, and Scherk’s surface may be nonparametric

but it’s only defined on a checkerboard. We have a bunch of lemmas to work

through first.

Lemma 15.2.1 (Osserman 5.1). Let E : D → R be a C2 function on a

convex domain D, and suppose that the Hessian matrix
(

∂2E
∂xi∂xj

)
evaluated at

any point is positive definite. (This means that the quadratic form it defines

sends every nonzero vector to a positive number, or equivalently that it is

symmetric with positive eigenvalues.) Define a mapping φ : D → R
2 with

φ(x1, x2) = ( ∂E
∂x1

(x1, x2),
∂E
∂x2

(x1, x2)) (since ∂E
∂x1

: D → R). Let a and b be

distinct points of D; then (b − a) · (φ(b) − φ(a)) > 0.

Proof. Let G(t) = E(tb + (1 − t)a) = E(tb1 + (1 − t)a1, tb2 + (1 − t)b2) for

t ∈ [0, 1]. Then

G′(t) =
2∑

i=1

(
∂E

∂xi

(tb + (1 − t)a)

)
(bi − ai)

(note that the tb + (1 − t)a here is the argument of ∂E
∂xi

, not a multiplied
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factor) and

G′′(t) =
2∑

i,j=1

(
∂2

∂xi∂xj

(tb + (1 − t)a)

)
(bi − ai)(bj − aj)

But this is just the quadratic form of
(

∂2E
∂xi∂xj

)
evaluated at the point tb +

(1 − t)a, applied to the nonzero vector b − a. By positive definiteness, we

have that G′′(t) > 0 for t ∈ [0, 1]. So G′(1) > G′(0), which is to say that
∑

φ(b)i(bi−ai) >
∑

φ(a)i(bi−ai), which is to say that (φ(b)−φ(a))·(b−a) >

0.

Lemma 15.2.2 (Osserman 5.2). Assume the hypotheses of Osserman

Lemma 5.1. Define the map z : D → R
2 by zi(x1, x2) = xi +φi(x1, x2). Then

given distinct points a, b ∈ D, we have that (z(b) − z(a)) · (b − a) > |b − a|2,
and |z(b) − z(a)| > |b − a|.

Proof. Since z(b)−z(a) = (b−a)+(φ(b)−φ(a)), we have that (z(b)−z(a)) ·
(b − a) = |b − a|2 + (φ(b) − φ(a)) · (b − a) > |b − a|2 by the previous lemma.

Then |b − a|2 < |(z(b) − z(a)) · (b − a)| ≤ |z(b) − z(a)||b − a|, where the

second inequality holds by Cauchy-Schwarz; so |b − a| < |z(b) − z(a)|.

Lemma 15.2.3 (Osserman 5.3). Assume the hypotheses of Osserman

Lemma 5.2. If D is the disk x2
1 + x2

2 < R2, then the map z is a diffeo-

morphism of D onto a domain ∆ which includes a disk of radius R around

z(0).

Proof. We know that z is continuously differentiable, since E ∈ C2. If x(t) is

any differentiable curve in D and z(t) is its image under z, then it follows from

the previous lemma that |z′(t)| > |x′(t)|; thus the determina t of the matrix dz

(which is to say, the Jacobian) is greater than 1, since z′(t) = (dz)x′(t) implies

that |z′(t)| = det dz|x′(t)|. So since the Jacobian is everywhere greater than

1, the map is a local diffeomorphism everywhere. It’s also injective (because
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φ(b)−φ(a) = 0 implies that b− a = 0 by the previous lemma), so it’s in fact

a (global) diffeomorphism onto a domain ∆.

We must show that ∆ includes all points z such that z − z(0) < R. If

∆ is the whole plane this is obvious; otherwise there is a point Z in the

complement of ∆ (which is closed) which minimizes the distance to z(0).

Let Zk be a sequence of points in R
2 − ∆ which approach Z (if this didn’t

exist, we could find a point in R
2 − ∆ closer to z(0) than Z), and since z is

a diffeomorphism, we let xk be the sequence of points mapped onto Zk by z.

The points xk cannot have a point of accumulation in D, since that would

be mapped by z onto a point of ∆, and we are assuming that Z 6∈ ∆. But

xk must have an accumulation point in R
2 in order for their image to; so

|xk| → R as k → ∞; since |Zk − z(0)| > |xk − 0| by the previous lemma, we

have that |Z − z(0)| ≥ R, so every point within R of z(0) is in ∆.

Lemma 15.2.4 (Osserman 5.4). Let f(x1, x2) be a non-parametric solution

to the minimal surface equation in the disk of radius R around the origin.

Then the map ξ defined earlier is a diffeomorphism onto a domain ∆ which

includes a disk of radius R around ξ(0).

Proof. It follows from the defining characteristics of F and G that there exists

a function E satisfying ∂E
∂x1

= F and ∂E
∂x2

= G, for the same reason that F and

G exist. Then E ∈ C2, and ∂2E
∂x2

1
= 1+|p|2

W
> 0, and det ∂2E

∂xi∂xj
= ∂(F,G)

∂(x1,x2)
= 1 > 0

(by the definition of W , it’s a simple check). Any matrix

(
a b

b c

)
with a > 0

and ac − b2 > 0 must have c > 0, so its trace and determinant are both

positive, so the sum and product of its eigenvalues are both positive, so it is

positive definite. So the Hessian of E is positive definite. We can see that

the mapping z defined in (our version of) Osserman Lemma 5.2 is in this

case the same map as ξ defined in (our version of) Osserman Lemma 4.4. So

by Osserman Lemma 5.3, we have that ξ is a diffeomorphism onto a domain

∆ which includes a disk of radius R around ξ(0).
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Lemma 15.2.5 (Osserman 5.5). Let f : D → R be a C1 function. Then

the surface S in R
3 defined in non-parametric form by x3 = f(x1, f2) lies on

a plane iff there exists a nonsingular linear transformation ψ : U → D from

some domain U such that u1, u2 are isothermal parameters on S.

Proof. Suppose such parameters u1, u2 exist. Letting φk(ζ) = ∂xk

∂u1
− i∂xk

∂u2
, for

1 ≤ k ≤ 3, we see that φ1 and φ2 are constant because x1 and x2 are linear

in u1 and u2. We know from a previous lecture that u1 and u2 are isothermal

parameters iff
∑3

k=1 φ2
k(ζ) is zero for all ζ, so φ3 is constant too. (Well, it

implies that φ2
3 is constant, which constrains it to at most two values, and

since φ3 must be continuous, it must be constant.) This means that x3 has

a constant gradient with respect to u1, u2 and thus also with respect to x1,

x2. This means that we must have f(x1, x2) = Ax1 + Bx2 + C; but this is

the equation of a plane.

Conversely, if f(x1, x2) is a part of a plane, then it equals Ax1+Bx2+C for

some constants A, B, and C. Then the map x(u1, u2) = (λAu1+Bu2, λBu1−
Au2) with λ2 = 1

1+A2+B2 is isothermal. To check this, we see that φ1 = λA−
iB, φ2 = λB + iA, φ2

1 = λ2A2−B2−2λABi, φ2
2 = λ2B2−A2 +2λABi. x3 =

Ax1 +Bx2 +C = A(λAu1 +Bu2)+B(λBu1 −Au2)+C, so φ3 = λ(A2 +B2)

and φ2 = λ2(A2+B2)2. Then φ2
1+φ2

2+φ2
3 = λ2(A2+B2)−(A2+B2)+λ2(A2+

B2)2 = (A2 +B2)(λ2 − 1+λ2(A2 +B2)) = (A2 +B2)(λ2(1+A2 +B2)− 1) =

(A2 + B2)(1 − 1) = 0, so this is isothermal.

15.3 Bernstein’s Theorem

Theorem 15.3.1 (Bernstein’s Theorem, Osserman 5.1). Let f(x1, x2)

be a solution of the non-parametric minimal surface equation defined in the

entire x1, x2 plane. Then there exists a nonsingular linear transformation

x1 = u1, x2 = au1+bu2 with b > 0 such that u1, u2 are isothermal parameters

on the entire u-plane for the minimal surface S defined by xk = fk(x1, x2)

(3 ≤ k ≤ n).
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Proof. Define the map ξ as in our version of Osserman Lemma 4.4. Osserman

Lemma 5.4 shows that this is a diffeomorphism from the entire x-plane onto

the entire ξ-plane. We know from Osserman Lemma 4.4 that ξ is a set of

isothermal parameters on S. By Osserman Lemma 4.3 (which Nizam proved),

the functions φk(ζ) = ∂xk

∂ξ1
− i∂xk

∂ξ2
(1 ≤ k ≤ n) are analytic functions of ζ.

We can see that ℑ(φ̄1φ2) = −∂(x1,x2)
∂(ξ1,ξ2)

; since this Jacobian is always positive

(see proof of Osserman Lemma 4.4), we can see that φ1 6= 0, φ2 6= 0, and

that ℑφ2

φ1
= 1

|φ1|2
ℑ(φ̄1φ2) < 0. So the function φ2

φ1
is analytic on the whole

ζ-plane and has negative imaginary part everywhere. By Picard’s Theorem,

an analytic function that misses more than one value is constant, so φ2

φ1
= C

where C = a − ib. That is φ2 = (a − ib)φ1. The real part of this equation is
∂x2

∂ξ1
= a∂x1

∂ξ1
− b∂x1

∂ξ2
, and the imaginary part is ∂x2

∂ξ2
= b∂x1

∂ξ1
+ a∂x1

∂ξ2
. If we then

apply the linear transformation from the statement of the theorem, using

the a and b that we have, this becomes ∂u1

∂ξ1
= ∂u2

∂ξ2
and ∂u2

∂ξ2
= −∂u1

∂ξ2
: the

Cauchy-Reimann equations! So u1 + iu2 is an analytic function of ξ1 + iξ2.

But by Osserman Lemma 4.5, this implies that u1, u2 are also isothermal

parameters, which proves the theorem.

This (with Osserman Lemma 5.5) has the immediate corollary that for

n = 3, the only solution of the non-parametric minimal surface equation on

the entire x-plane is surface that is a plane. This gives us a nice way to

generate lots of weird minimal surfaces in dimensions 4 and up by starting

with analytic functions; this is Osserman Corollary 3, but I do not have time

to show this.
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