
Chapter 16

Manifolds and Geodesics

Reading:

• Osserman [7] Pg. 43-52, 55, 63-65,

• Do Carmo [2] Pg. 238-247, 325-335.

16.1 Manifold Theory

Let us recall the definition of differentiable manifolds

Definition 16.1.1. An n-manifold is a Hausdorff space, each point of which

has a neighborhood homeomorphic to a domain in R
n.

Definition 16.1.2. An atlas A for an n-manifold Mn is a collection of

triples (Uα, Vα, ϕα) where Uα is a domain in Rn, Vα is an open set on Mn,

and ϕα is a homeomorphism of Uα onto Vα, and

⋃

α

Vα = Mn (16.1)

Each triple is called a map.
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Figure 16.1: Definition of atlas

Definition 16.1.3. A Cr- (resp. conformal) structure on Mn is at atlas for

which each transformation ϕ−1
α ◦ ϕβ ∈ Cr (resp. conformal) wherever it is

defined.

Corollary 16.1.4. The space Rn has a canonical Cr-structure for all r,

defined by letting A consists of the single triple Uα = Vα = Rn, and ϕα the

identity map.

Let S be a Cr-surface in Rn, and A the Cr-structure on the associated

2-manifold M . We discussed that all local properties of surfaces which are

independent of parameters are well defined on a global surface S by the

change of parameters. The global properties of S will be defined simply

to be those of M , such as orientation, compactness, connectedness, simply

connectedness, etc.

In the rest of the course, all surfaces will be connected and orientable.
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Definition 16.1.5. A regular C2-surface S in Rn is a minimal surface if

its mean curvature vector vanishes at each point.
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Figure 16.2: Lemma 6.1

The following two lemmas are useful for the proof of Lemma 6.1 in [7].

(Lemma 4.4 in [7]). Let S be a minimal surface. Every regular point of

S has a neighborhood in which there exists a reparametrization of S in terms

of isothermal parameters.

(Lemma 4.5 in [7]). Let a surface S be defined by x(u), where u1, u2 are

isothermal parameters, and let S̃ be a reparametrization of S defined by a

diffeomorphism u(ũ). Then ũ1, ũ2 are also isothermal parameters if and only

if the map u(ũ is either conformal or anti-conformal.

(Lemma 6.1 in [7]). Let S be a regular minimal surface in Rn defined by

a map x(p) : M → Rn. Then S induces a conformal structure on M .
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Proof. Assume the surface S is orientable, and A be an oriented atlas of M .

Let Ã be the collection of all the maps (Ũα, Ṽα, ϕ̃α) ∈ A such that ϕ̃−1
β ◦ ϕ̃α

preserves orientation wherever defined, and the map x◦ϕ̃α : Ũα → Rn defines

a local surface in isothermal parameters. By Lemma 16.1 the union of Ṽα

equals M , so Ã is an atlas for M . And by Lemma 16.1 each ϕ̃β ◦ ϕ̃α is

conformal wherever defined. So Ã defines a conformal structure on M .

With the previous lemma, we can discuss some basic notions connected

with conformal structure. If M has a conformal structure, then we can define

all concepts which are invariant under conformal mapping, such as analytic

maps of one such manifold M into another M̃ .

Example 7. (Stereographic Projection) A meromorphic function on M

is a complex analytic map of M into the Riemann sphere. The latter can be

defined as the unit sphere in R3 with the conformal strucutre defined by a

pair of maps

ϕ1 : x =

(
2u1

|w|2 + 1
,

2u2

|w|2 + 1
,
|w|2 − 1

|w|2 + 1

)
, w = u1 + iu2 (16.2)

ϕ2 : x =

(
2ũ1

|w̃|2 + 1
,

−2ũ2

|w̃|2 + 1
,
1 − |w̃|2
|w̃|2 + 1

)
, w̃ = ũ1 + iũ2 (16.3)

The map ϕ1 is called the stereographic projection from the point (0, 0, 1),

and one can easily show that ϕ−1
1 ◦ ϕ2 is simply w = 1

w̃
, a conformal map of

0 < |w̃| < ∞ onto 0 < |w| < ∞.

Definition 16.1.6. A generalized minimal surface S in Rn is a non-

constant map x(p) : M → Rn, where M is a 2-manifold with a conformal

structure defined by an atlas A = {Uα, Vα, ϕα}, such that each coordinate

function xk(p) is harmonic on M , and furthermore

n∑

k=1

φ2
k(ζ) = 0 (16.4)
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Figure 16.3: Stereographic Projection

where we set for an arbitrary a,

hk(ζ) = xk(ϕα(ζ)) (16.5)

φk(ζ) =
∂hk

∂ξ1

− i
∂hk

∂ξ2

, ζ = ξ1 + iξ2 (16.6)

Following is a lemma from Ch.4 in [7]

(Lemma 4.3 in [7]). Let x(u) define a regular minimal surface, with u1, u2

isothermal parameters. Then the function φk(ζ) defined by 16.6 are analytic,

and they satisfy equation
n∑

k=1

φ2
k(ζ) = 0 (16.7)

and
n∑

k=1

|φ2
k(ζ)| 6= 0. (16.8)

Conversely, let φ1(ζ), ..., φn(ζ) be analytic functions of ζ which satisfy Eqs. 16.7

and 16.8 in a simply-connected domain D. Then there exists a regular min-

imal surface x(u) defined over D, such that Eqs. 16.6 are valid.

Corollary 16.1.7. If S is regular minimal surface, then S is also a gener-

alized minimal surface.
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Proof. We can use the conformal structure defined in Lemma 6.1, and the

result follows from Lemma 4.3 in [7]

Definition 16.1.8. Let S be a generalized minimal surface, and ζ ∈ S. The

branch points ζ’s with respect to the function φk correspond to the ζ’s at

which
n∑

k=1

|φ2
k(ζ)| = 0 (16.9)

Corollary 16.1.9. Let S be a generalized minimal surface, and S ′ be the

surface S with branch points with respect to the function φ in Eq. 16.6 deleted.

Then S ′ is a regular minimal surface.

Proof. Let x(p) be the coordinate map of S, where p ∈ S. Since x(p) is non

constant, at least one of the function xk(p) is non constant. That means that

the corresponding φk(ζ) can have at most isolated zeroes, and the equation

n∑

k=1

|φ2
k(ζ)| = 0 (16.10)

can hold at most at the branch points. Since S ′ consists of the whole surface

S without the branch points, S ′ is a regular minimal surface, from Lemma

4.3 in [7].

In the case of n = 2 in the definition of a generalized surface, either

x1 + ix2 or x1 − x2 is a non-constant analytic function f(ζ). The branch

points on the surface satisfy the Eq. 16.9. That is, they satisfy the equation

f ′(ζ) = 0, which is the inverse mapping.

For large n, the difference between regular and generalized minimal sur-

faces consists in allowing the possibility of isolated branch points. However,

there are theorems where the possible existence of branch points has no effect.

The following lemma is one of the example.

(Lemma 6.2 in [7]). A generalized minimal surface cannot be compact
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Proof. Let S be a generalized minimal surface defined by a map x(p) : M →
Rn. Then each coordinate function xk(p) is harmonic on M . If M were

compact, the function xk(p) would attain its maximum, hence it would be a

constant. This contradicts the assumption that the map x(p) is non-constant.

16.2 Plateau Problem

One of the prime examples of extending the properties of generalized surface

to regular surface is the classical Plateau problem, which is discussed in the

appendix of [7].

Figure 16.4: A 13-polygon surface obtained for a cubical wire frame

Definition 16.2.1. An arc z(t) is simple if z(t1) = z(t2) only for t1 = t2.

A Jordan curve is a simple closed curve.

Proposition 16.2.2. (Osserman) Let Γ be an arbitrary Jordan curve in R3.

Then there exists a regular simply connected minimal surface bounded by Γ.

The existence of a solution to the general case was independently proven

by Douglas (1931) [3] and Radò (1933) [8], although their analysis could
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not exclude the possibility of singularities (i.e. for the case of generalized

minimal surface). Osserman (1970) [6] and Gulliver (1973) [4] showed that

a minimizing solution cannot have singularities [9].

Table 16.1: Development on the Plateau’s problem in 1970-1985
Meeks and Yau When the curve Γ defined in Prop. 16.2.2 lies on the

boundary of a convex body, then the surface
obtained is embedded (i.e. without self-intersections).

Gulliver and Spruck They proved the result from Meeds and Yau under
the additional assumption that the total curvature
of Γ was at most 4π.

Figure 16.5: An Enneper surface

16.3 Geodesics

A geodesics is analogue to the straight line on a Euclidean plane. In or-

der to define geodesics, we first have to understand the notion of covariant

derivative, which is analogue to the usual differentiation of vectors in the

plane.
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Definition 16.3.1. A vector field w in an open set U in the regular surface

S assigns to each p ∈ U a vector w(p) ∈ Tp(S). The vector field is differen-

tiable at p if, for some parametrization x(u, v) in p, the components a and

b of w = axu + bxv in the basis of {xu,xv} are differentiable functions at p.

The vector field is differentiable in U if it is differentiable for all p ∈ U .

Definition 16.3.2. Let w be a differentiable vector field in an open set U ⊂ S

and p ∈ U . Let y ∈ Tp(S) and α : (−ǫ, ǫ) → U a parametrized curve with

α(0) = p and α′(0) = y. Let w(t) be the restriction of the vector field w

to the curve α. Then the covariant derivative at p of the vector field w

relative to the vector y, (Dw/dt)(0), is given by the vector obtained by the

normal projection of (dw/dt)(0) onto the plane Tp(S).

p

p

w

(Dw/dt)

y
N

α

(dw/dt)

S

T  (S)

Figure 16.6: The covariant derivative

Definition 16.3.3. A vector field w along a parametrized curve α : I → S

is said to be parallel is Dw/dt = 0 for every t ∈ I.
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Figure 16.7: A parallel vector field w along the curve α.

Definition 16.3.4. A non-constant, parametrized curve γ : I → S is said to

be geodesic at t ∈ I if the field of its tangent vectors γ′(t) is parallel along

γ at t, that is
Dγ′(t)

dt
= 0 (16.11)

From Eq. 16.11, we know that |γ′(t)| =constant, thus the arc length s

is proportional to the parameter t, and thus we can reparametrize γ with

parameter s. Note also that Eq. 16.11 implies that α′′(s) = kn is normal to

the tangent plane, or parallel to the normal to the surface. Therefore another

way to define a geodesic is a regular curve which its principal normal at each

point p along the curve is parallel to the normal to S at p.

Below are some examples of geodesics:

Example 8 (Geodesics on the sphere S2). The great circles C of a sphere

S2 are obtained by intersecting the sphere with a plane that passes through

the center O of the sphere. The principal normal at a point p ∈ C lies in the

direction of the line that connects p to O, the center of C. Since this is also

the direction of the normal at p, the great circles are geodesics.

110



Example 9 (Geodesics on a right circular cylinder over the circle

x2 + y2 = 1). It is clear that the circles obtained by the intersection of the

cylinder with planes that are normal to the axis of the cylinder are geodesics.

The straight lines of the cylinder are also geodesics. To find other geodesics

on the cylinder C, consider the parametrization

x(u, v) = (cos u, sin u, v) (16.12)

of the cylinder in a point p ∈ C, with x(0, 0) = p. Then x is an isometry that

maps a neighborhood U of (0, 0) of the uv-plane into the cylinder. Since the

condition of being a geodesic is local and invariant by isometries, the image

of straight lines in U under the map x should be a geodesic on C. Since a

straight line on the uv-plane can be expressed as

u(s) = as, v(s) = bs, a2 + b2 = 1, (16.13)

it follows that a geodesic of the cylinder is locally of the form

(cos as, sin as, bs) (16.14)

which is a helix.

x
(0,0)

planeuv−

Figure 16.8: Geodesics on a cylinder
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16.4 Complete Surfaces

In order to study regular surfaces globally, we need some global hypothesis

to ensure that the surface cannot be extended further as a regular surface.

Compactness serves this purpose, but it would be useful to have a weaker

hypothesis than compctness which could still have the same effect.

Definition 16.4.1. A regular (connected) surface S is said to be extendable

if there exists a regular (connected) surface S̄ such that S ⊂ S̄ as a proper

subset. If there exists no such S̄, then S is said to be nonextendable.

Definition 16.4.2. A regular surface S is said to be complete when for

every point p ∈ S, any parametrized geodesic γ : [0, ǫ) → S of S, starting

from p = γ(0), may be extended into a parametrized geodesic γ̄ : R → S,

defined on the entire line R.

Example 10 (Examples of complete/non-complete surface). 1. The

plane is a complete surface.

2. The cone minus the vertex is a noncomplete surface, since by extending

a generator (which is a geodesic) sufficiently we reach the vertex, which

does not belong to the surface.

3. A sphere is a complete surface, since its parametrized geodesics (the

great circles) may be defined for every real value.

4. The cylinder is a complete surface since its geodesics (circles, lines and

helices) can be defined for all real values

5. A surface S − {p} obtained by removing a point p from a complete

surface S is not complete, since there exists a geodesic of S − {p} that

starts from a point in the neighborhood of p and cannot be extended

through p.

Proposition 16.4.3. A complete surface S is nonextendable.
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Proof. Let us assume that S is extendable and obtain a contradiction. If

S is extendable, then there exists a regular (connected) surface S̄ such that

S ⊂ S̄. Since S is a regular surface, S is open in S̄. The boundary Bd(S) of

S is nonempty, so there exists a point p ∈ Bd(S) such that p /∈ S.

Let V̄ ⊂ S̄ be a neighborhood of p in S̄ such that every q ∈ V̄ may be

joined to p by a unique geodesic of S̄. Since p ∈ Bd(S), some q0 ∈ V̄ belongs

to S. Let γ̄ : [0, 1] → S̄ be a geodesic of S̄, with γ̄(0) = p and γ̄(1) = q0.

It is clear that α : [0, ǫ) → S, given by α(t) = γ̄(1 − t), is a geodesic of S,

with α(0) = q0, the extension of which to the line R would pass through p

for t = 1. Since p /∈ S, this geodesic cannot be extended, which contradicts

the hypothesis of completness and concludes the proof.

Proposition 16.4.4. A closed surface S ⊂ R3 is complete

Corollary 16.4.5. A compact surface is complete.

Theorem 16.4.6 (Hopf-Rinow). Let S be a complete surface. Given two

points p, q ∈ S, there exists a nimimal geodesic joining p to q.

16.5 Riemannian Manifolds

Definition 16.5.1. A Riemannian structure on M , or a Cq-Riemannian

metric is a collection of matrices Ga, where the elements of the matrix Ga

are Cq-functions on Vα, 0 ≤ q ≤ r − 1, and at each point the matrix Gα is

positive definite, while for any α, β such that the map u(ũ) = ϕ−1
α ◦ ϕβ is

defined, the relation

Gβ = UT GαU (16.15)

must hold, where U is the Jacobian matrix of the transformation ϕ−1
α ◦ ϕβ.
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