
Chapter 18

Weierstrass-Enneper

Representations

18.1 Weierstrass-Enneper Representations of

Minimal Surfaces

Let M be a minimal surface defined by an isothermal parameterization

x(u, v). Let z = u + iv be the corresponding complex coordinate, and recall

that
∂

∂z
=

1

2
(

∂

∂u
− i

∂

∂v
),

∂

∂z
=

1

2
(

∂

∂u
+ i

∂

∂v
)

Since u = 1/2(z + z) and v = −i/2(z − z) we may write

x(z, z) = (x1(z, z), x2(z, z), x3(z, z))

Let φ = ∂x
∂z

, φi = ∂xi

∂z
. Since M is minimal we know that φis are complex

analytic functions. Since x is isothermal we have

(φ1)2 + (φ2)2 + (φ3)2 = 0 (18.1)

(φ1 + iφ2)(φ1 − iφ2) = −(φ3)2 (18.2)
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Now if we let f = φ1 − iφ2 and g = φ3/(φ1 − iφ2) we have

φ1 = 1/2f(1 − g2), φ2 = i/2f(1 + g2), φ3 = fg

Note that f is analytic and g is meromorphic. Furthermore fg2 is analytic

since fg2 = −(φ1 + iφ2). It is easy to verify that any φ satisfying the

above equations and the conditions of the preceding sentence determines a

minimal surface. (Note that the only condition that needs to be checked is

isothermality.) Therefore we obtain:

Weierstrass-Enneper Representation I If f is analytic on a domain

D, g is meromorphic on D and fg2 is analytic on D, then a minimal surface

is defined by the parameterization x(z, z) = (x1(z, z), x2(z, z), x3(z, z), where

x1(z, z) = Re

∫
f(1 − g2)dz (18.3)

x2(z, z) = Re

∫
if(1 + g2)dz (18.4)

x3(z, z) = Re

∫
fgdz (18.5)

Suppose in WERI g is analytic and has an inverse function g−1. Then

we consider g as a new complex variable τ = g with dτ = g′dz Define

F (τ) = f/g′ and obtain F (τ)dτ = fdz. Therefore, if we replace g with τ

and fdz with F (τ)dτ we get

Weierstrass-Enneper Representation II For any analytic function F (τ),

a minimal surface is defined by the parameterization x(z, z) = (x1(z, overlinez), x2(z, z), x3(z, z)),
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where

x1(z, z) = Re

∫
F (τ)(1 − τ 2)dz (18.6)

x2(z, z) = Re

∫
iF (τ)(1 + τ 2)dz (18.7)

x3(z, z) = Re

∫
F (τ)τdz (18.8)

This representation tells us that any analytic function F (τ) defines a mini-

mal surface.

class exercise Find the WERI of the helicoid given in isothermal coor-

dinates (u, v)

x(u, v) = (sinhusinv,−sinhucosv,−v)

Find the associated WERII. (answer: i/2τ 2) Show that F (τ) = 1/2τ 2 gives

rise to catenoid. Show moreover that φ̃ = −iφ for conjugate minimal surfaces

x and x̃.

Notational convention We have two F s here: The F of the first fun-

damental form and the F in WERII. In order to avoid confusion well denote

the latter by T and hope that Oprea will not introduce a parameter using

the same symbol. Now given a surface x(u, v) in R3 with F = 0 we make the

following observations:

i. xu, xv and N(u, v) constitute an orthogonal basis of R3.

ii. Nu and Nv can be written in this basis coefficients being the coefficients

of matrix dNp

iii. xuu, xvv and xuv can be written in this basis. One should just compute

the dot products 〈xuu, xu〉, 〈xuu, xv〉, 〈xuu, N〉 in order to represent xuu in this

basis. The same holds for xuv and xvv. Using the above ideas one gets the
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following equations:

xuu =
Eu

2E
xu −

Ev

2G
+ eN (18.9)

xuv =
Ev

2E
xu +

Gv

2G
+ fN (18.10)

xvv =
−Gu

2E
xu +

Gv

2G
+ gN (18.11)

Nu = − e

E
xu −

f

G
xv (18.12)

Nv = − f

E
xu −

g

G
xv (18.13)

Now we state the Gausss theorem egregium:

Gausss Theorem Egregium The Gauss curvature K depends only on

the metric E,F = 0and G:

K = − 1

2
√

EG
(

∂

∂v
(

Ev√
EG

) +
∂

∂u
(

Gu√
EG

))

This is an important theorem showing that the isometries do not change the

Gaussian curvature.

proof If one works out the coefficient of xv in the representation of xuuv−
xuvu one gets:

xuuv = []xu + [
EuGu

4EG
− (

Ev

2G
)v −

EvGv

4G2
− eg

G
]xv + []N (18.14)

xuvu = []xu +
Ev

2E
xuu + (

Gu

2G
)uxuv + fuN + fNu (18.15)

xuvu = []xu + [−EvEv

4EG
+ (

Gu

2G
)u +

GuGu

4G2
− f 2

G
]xv + []U (18.16)

Because the xv coefficient of xuuv − xuvu is zero we get:

0 =
EuGu

4EG
− (

Ev

2G
)v −

EvGv

4G2
+

EvEv

4EG
− (

Gu

2G
)u −

GuGu

4G2
− eg − f 2

G
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dividing by E, we have

eg − f 2

EG
=

EuGu

4E2G
− 1

E
(
Ev

2G
)v −

EvGv

4EG2
+

EvEv

4E2G
− 1

E
(
Gu

2G
)u −

GuGu

4EG2

Thus we have a formula for K which does not make explicit use of N :

K = − 1

2
√

EG
(

∂

∂v
(

∂Ev

∂
√

EG
) +

∂

∂u
(

Gu√
EG

))

Now we use Gausss theorem egregium to find an expression for K in terms

of T of WERII

K = − 1

2
√

EG
(

∂

∂v
(

Ev√
EG

) +
∂

∂u
(

Gu√
EG

)) (18.17)

= − 1

2E
(

∂

∂v
(
Ev

E
) +

∂

∂u
(
Eu

E
)) (18.18)

= − 1

2E
∆(lnE) (18.19)

Theorem The Gauss curvature of the minimal surface determined by the

WER II is

K =
−4

|T |2(1 + u2 + v2)4

where τ = u + iv. That of a minimal surface determined by WER I is:

K =
4|g′|2

|f |2(1 + |g|2)4

In order to prove this thm one just sees that E = 2|φ|2 and makes use of the

equation (20). Now we prove a proposition that will show WERs importance

later.

Proposition Let M be a minimal surface with isothermal parameteriza-

tion x(u, v). Then the Gauss map of M is a conformal map.

proof In order to show N to be conformal we only need to show |dNp(xu)| =
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ρ(u, v)|xu|, |dNp(xv)| = ρ(u, v)|xv| and dNp(xu).dNp(xv) = ρ2xu.xv Latter

is trivial because of the isothermal coordinates. We have the following eqns

for dNp(xu) and dNp(xv)

dNp(xu) = Nu = − e

E
xu −

f

G
xv (18.20)

dNp(xv) = Nv = − f

E
xu −

g

G
xv (18.21)

By minimality we have e + g = 0. Using above eqns the Gauss map is

conformal with scaling factor

√
e2+f2

E
=

√
|K| It turns out that having a

conformal Gauss map almost characterizes minimal surfaces:

Proposition Let M be a surface parameterized by x(u, v) whose Gauss

map N : M −→ S2 is conformal. Then either M is (part of) sphere or M is

a minimal surface.

proof We assume that the surface is given by an orthogonal parameter-

ization (F = 0) Since xu.xv = 0 by conformality of N Nu.Nv = 0 using the

formulas (13) (14) one gets f(Ge + Eg) = 0 therefore either e = 0 (at every

point) or Ge + eG = 0(everywhere). The latter is minimal surface equality.

If the surface is not minimal then f = 0. Now use f = 0, confomality and

(13), (14) to get

e2

E
= Nu.Nu = ρ2E,

g2

G
= Nv.Nv = ρ2G

Multiplying across each equation produces

e2

E2
=

g2

G2
⇒ e

G
= ± g

G

The last equation with minus sign on LHS is minimal surface equation so we

may just consider the case e/E = g/G = k. Together with f = 0 we have

Nu = −kxu and Nv = −kxv this shows that xu and xv are eigenvectors of

the differential of the Gauss map with the same eigenvalue. Therefore any
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point on M is an umbilical point. The only surface satisfying this property

is sphere so were done.

Steographic Projection: St : S2 − N −→ R2 is given by St(x, y, z) =

(x/(1−z), y/(1−z), 0) We can consider the Gauss map as a mapping from the

surface to C ∪∞ by taking its composite with steographic projection.Note

that the resulting map is still conformal since both of Gauss map and Steo-

graphic are conformal. Now we state a thm which shows that WER can

actually be attained naturally:

Theorem Let M be a minimal surface with isothermal parameterization

x(u, v) and WER (f, g). Then the Gauss map of M , G : M −→ C ∪∞ can

be identified with the meromorphic function g.

proof Recall that

φ1 =
1

2
f(1 − g2), φ2 = i2f(1 + g2), φ3 = fg

We will describe the Gauss map in terms of φ1, φ2 and φ3.

xu × xv = ((xu × xv)
1, (xu × xv)

2, (xu × xv)
3) (18.22)

= (x2
ux

3
v − x3

ux
2
v, x

3
ux

1
v − x1

ux
3
v, x

1
ux

2
v − x2

ux
1
v) (18.23)

and consider the first component x2
ux

3
v − x3

ux
2
v we have

x2
ux

3
v − x3

ux
2
v = 4Im(φ2φ

3
)

Similarly (xu × xv)
2 = 4Im(φ2φ

1
) and (xu × xv)

3 = 4Im(φ1φ2) Hence we

obtain

xu × xv = 4Im(φ2φ3, φ3φ1, φ1φ2) = 2Im(φ × φ)

Now since x(u, v) is isothermal |xu × xv| = |xu||xv| = E = 2|φ|2. Therefore

we have

N =
xu × xv

|xu × xv|
=

φ × φ

|φ|2
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Now

G(u, v) = St(N(u, v)) (18.24)

= St(
xu × xv

|xu × xv|
) (18.25)

= St(
φ × φ

|φ|2 ) (18.26)

= St(2Im(φ2φ3, φ3φ1, φ1φ2)|φ|2) (18.27)

= (
2Im(φ2φ3)

|φ|2 − 2Im(φ1φ2)
,

2Im(φ3φ1)

|φ|2 − 2Im(φ1φ2)
, 0) (18.28)

Identifying (x, y) in R2 with x + iy ∈ C allows us to write

G(u, v) =
2Im(φ2φ3) + 2iIm(φ3φ1)

|φ|2 − 2Im(φ1φ2)

Now its simple algebra to show that

G(u, v) =
φ3

φ1 − iφ2

But that equals to g so were done.
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