
Chapter 2

A Review on Differentiation

Reading: Spivak pp. 15-34, or Rudin 211-220

2.1 Differentiation

Recall from 18.01 that

Definition 2.1.1. A function f : R
n → R

m is differentiable at a ∈ R
n if

there exists a linear transformation λ : R
n → R

m such that

lim
h→0

|f(a + h) − f(a) − λ(h)|
|h| = 0 (2.1)

The norm in Equation 2.1 is essential since f(a + h) − f(a) − λ(h) is in R
m

and h is in R
n.

Theorem 2.1.2. If f : R
n → R

m is differentiable at a ∈ R
n, then there is

a unique linear transformation λ : R
n → R

m that satisfies Equation (2.1).

We denote λ to be Df(a) and call it the derivative of f at a

Proof. Let µ : R
n → R

m such that

lim
h→0

|f(a + h) − f(a) − µ(h)|
|h| = 0 (2.2)
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and d(h) = f(a + h) − f(a), then

lim
h→0

|λ(h) − µ(h)|
|h| = lim

h→0

|λ(h) − d(h) + d(h) − µ(h)|
|h| (2.3)

≤ lim
h→0

|λ(h) − d(h)|
|h| + lim

h→0

|d(h) − µ(h)|
|h| (2.4)

= 0. (2.5)

Now let h = tx where t ∈ R and x ∈ R
n, then as t → 0, tx → 0. Thus, for

x 6= 0, we have

lim
t→0

|λ(tx) − µ(tx)|
|tx| =

|λ(x) − µ(x)|
|x| (2.6)

= 0 (2.7)

Thus µ(x) = λ(x).

Although we proved in Theorem 2.1.2 that if Df(a) exists, then it is

unique. However, we still have not discovered a way to find it. All we can do

at this moment is just by guessing, which will be illustrated in Example 1.

Example 1. Let g : R
2 → R be a function defined by

g(x, y) = ln x (2.8)

Proposition 2.1.3. Dg(a, b) = λ where λ satisfies

λ(x, y) =
1

a
· x (2.9)

Proof.

lim
(h,k)→0

|g(a + h, b + k) − g(a, b) − λ(h, k)|
|(h, k)| = lim

(h,k)→0

| ln(a + h) − ln(a) − 1
a
· h|

|(h, k)|
(2.10)
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Since ln′(a) = 1
a
, we have

lim
h→0

| ln(a + h) − ln(a) − 1
a
· h|

|h| = 0 (2.11)

Since |(h, k)| ≥ |h|, we have

lim
(h,k)→0

| ln(a + h) − ln(a) − 1
a
· h|

|(h, k)| = 0 (2.12)

Definition 2.1.4. The Jacobian matrix of f at a is the m × n matrix of

Df(a) : R
n → R

m with respect to the usual bases of R
n and R

m, and denoted

f ′(a).

Example 2. Let g be the same as in Example 1, then

g′(a, b) = (
1

a
, 0) (2.13)

Definition 2.1.5. A function f : R
n → R

m is differentiable on A ⊂ R
n if

f is diffrentiable at a for all a ∈ A. On the other hand, if f : A → R
m, A ⊂

R
n, then f is called differentiable if f can be extended to a differentiable

function on some open set containing A.

2.2 Properties of Derivatives

Theorem 2.2.1. 1. If f : R
n → R

m is a constant function, then ∀a ∈ R
n,

Df(a) = 0. (2.14)

2. If f : R
n → R

m is a linear transformation, then ∀a ∈ R
n

Df(a) = f. (2.15)
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Proof. The proofs are left to the readers

Theorem 2.2.2. If g : R
2 → R is defined by g(x, y) = xy, then

Dg(a, b)(x, y) = bx + ay (2.16)

In other words, g′(a, b) = (b, a)

Proof. Substitute p and Dp into L.H.S. of Equation 2.1, we have

lim
(h,k)→0

|g(a + h, b + k) − g(a, b) − Dg(a, b)(h, k)|
|(h, k)| = lim

(h,k)→0

|hk|
|(h, k)| (2.17)

≤ lim
(h,k)→0

max(|h|2, |k|2)√
h2 + k2

(2.18)

≤
√

h2 + k2 (2.19)

= 0 (2.20)

Theorem 2.2.3. If f : R
n → R

m is differentiable at a, and g : R
m → R

p is

differentiable at f(a), then the composition g ◦ f : R
n → R

p is differentiable

at a, and

D(g ◦ f)(a) = Dg(f(a)) ◦ Df(a) (2.21)

Proof. Put b = f(a), λ = f ′(a), µ = g′(b), and

u(h) = f(a + h) − f(a) − λ(h) (2.22)

v(k) = g(b + k) − g(b) − µ(k) (2.23)

for all h ∈ R
n and k ∈ R

m. Then we have

|u(h)| = ǫ(h)|h| (2.24)

|v(k)| = η(k)|k| (2.25)
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where

lim
h→0

ǫ(h) = 0 (2.26)

lim
k→0

η(k) = 0 (2.27)

Given h, we can put k such that k = f(a + h) − f(a). Then we have

|k| = |λ(h) + u(h)| ≤ [‖λ‖ + ǫ(h)]|h| (2.28)

Thus,

g ◦ f(a + h) − g ◦ f(a) − µ(λ(h)) = g(b + k) − g(b) − µ(λ(h)) (2.29)

= µ(k − λ(h)) + v(k) (2.30)

= µ(u(h)) + v(k) (2.31)

Thus

|g ◦ f(a + h) − g ◦ f(a) − µ(λ(h))|
|h| ≤ ‖µ‖ǫ(h) + [‖λ‖ + ǫ(h)]η(h) (2.32)

which equals 0 according to Equation 2.26 and 2.27.

Exercise 1. (Spivak 2-8) Let f : R → R
2. Prove that f is differentiable at

a ∈ R if and only if f 1 and f 2 are, and that in this case

f ′(a) =

(
(f 1)′(a)

(f 2)′(a)

)
(2.33)

Corollary 2.2.4. If f : R
n → R

m, then f is differentiable at a ∈ R
n if and
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only if each f i is, and

λ′(a) =




(f 1)′(a)

(f 2)′(a)

.

.

.

(fm)′(a)




. (2.34)

Thus, f ′(a) is the m × n matrix whose ith row is (f i)′(a)

Corollary 2.2.5. If f, g : R
n → R are differentiable at a, then

D(f + g)(a) = Df(a) + Dg(a) (2.35)

D(fg)(a) = g(a)Df(a) + f(a)Dg(a) (2.36)

D(f/g)(a) =
g(a)Df(a) − f(a)Dg(a)

[g(a)]2
, g(a) 6= 0 (2.37)

Proof. The proofs are left to the readers.

2.3 Partial Derivatives

Definition 2.3.1. If f : R
n → R and a ∈ R

n, then the limit

Dif(a) = lim
h→0

f(a1, ..., ai + h, ..., an) − f(a1, ..., an)

h
(2.38)

is called the ith partial derivative of f at a if the limit exists.

If we denote Dj(Dif)(x) to be Di,j(x), then we have the following theorem

which is stated without proof. (The proof can be found in Problem 3-28 of

Spivak)

Theorem 2.3.2. If Di,jf and Dj,if are continuous in an open set containing

a, then

Di,jf(a) = Dj,if(a) (2.39)
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Partial derivatives are useful in finding the extrema of functions.

Theorem 2.3.3. Let A ⊂ R
n. If the maximum (or minimum) of f : A → R

occurs at a point a in the interior of A and Dif(a) exists, then Dif(a) = 0.

Proof. The proof is left to the readers.

However the converse of Theorem 2.3.3 may not be true in all cases.

(Consider f(x, y) = x2 − y2).

2.4 Derivatives

Theorem 2.4.1. If f : R
n → R

m is differentiable at a, then Djf
i(a) exists

for 1 ≤ i ≤ m, 1 ≤ j ≤ n and f ′(a) is the m × n matrix (Djf
i(a)).
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