Chapter 3

Inverse Function Theorem

(This lecture was given Thursday, September 16, 2004.)

3.1 Partial Derivatives

Definition 3.1.1. If $f: \mathbb{R}^n \to \mathbb{R}^m$ and $a \in \mathbb{R}^n$, then the limit

$$D_i f(a) = \lim_{h \to 0} \frac{f(a^1, \dots, a^i + h, \dots, a^n) - f(a^1, \dots, a^n)}{h}$$
(3.1)

is called the i^{th} partial derivative of f at a, if the limit exists.

Denote $D_j(D_i f(x))$ by $D_{i,j}(x)$. This is called a **second-order (mixed)** partial derivative. Then we have the following theorem (equality of mixed partials) which is given without proof. The proof is given later in Spivak, Problem 3-28.

Theorem 3.1.2. If $D_{i,j}f$ and $D_{j,i}f$ are continuous in an open set containing a, then

$$D_{i,j}f(a) = D_{j,i}f(a) \tag{3.2}$$

We also have the following theorem about partial derivatives and maxima and minima which follows directly from 1-variable calculus:

Theorem 3.1.3. Let $A \subset \mathbb{R}^n$. If the maximum (or minimum) of $f: A \to \mathbb{R}$ occurs at a point a in the interior of A and $D_i f(a)$ exists, then $D_i f(a) = 0$.

Proof: Let $g_i(x) = f(a^1, \dots, x, \dots, a^n)$. g_i has a maximum (or minimum) at a^i , and g_i is defined in an open interval containing a^i . Hence $0 = g'_i(a^i) = 0$.

The converse is not true: consider $f(x,y) = x^2 - y^2$. Then f has a minimum along the x-axis at 0, and a maximum along the y-axis at 0, but (0,0) is neither a relative minimum nor a relative maximum.

3.2 Derivatives

Theorem 3.2.1. If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at a, then $D_j f^i(a)$ exists for $1 \le i \le m, 1 \le j \le n$ and f'(a) is the $m \times n$ matrix $(D_j f^i(a))$.

Proof: First consider m=1, so $f:\mathbb{R}^n\to\mathbb{R}$. Define $h:\mathbb{R}\to\mathbb{R}^n$ by $h(x)=(a^1,\ldots,x,\ldots,a^n)$, with x in the j^{th} slot. Then $D_jf(a)=(f\circ h)'(a^j)$. Applying the chain rule,

Thus $D_j f(a)$ exists and is the jth entry of the $1 \times n$ matrix f'(a).

Spivak 2-3 (3) states that f is differentiable if and only if each f^i is. So the theorem holds for arbitrary m, since each f^i is differentiable and the ith row of f'(a) is $(f^i)'(a)$.

The converse of this theorem – that if the partials exists, then the full derivative does – only holds if the partials are continuous.

Theorem 3.2.2. If $f : \mathbb{R}^n \to \mathbb{R}^m$, then Df(a) exists if all $D_j f(i)$ exist in an open set containing a and if each function $D_j f(i)$ is continuous at a. (In this case f is called **continuously differentiable**.)

Proof.: As in the prior proof, it is sufficient to consider m=1 (i.e., $f: \mathbb{R}^n \to \mathbb{R}$.)

$$f(a+h) - f(a) = f(a^{1} + h^{1}, a^{2}, \dots, a^{n}) - f(a^{1}, \dots, a^{n})$$

$$+ f(a^{1} + h^{1}, a^{2} + h^{2}, a^{3}, \dots, a^{n}) - f(a^{1} + h^{1}, a^{2}, \dots, a^{n})$$

$$+ \dots + f(a^{1} + h^{1}, \dots, a^{n} + h^{n})$$

$$- f(a^{1} + h^{1}, \dots, a^{n-1} + h^{n-1}, a^{n}).$$
(3.4)

 D_1f is the derivative of the function $g(x)=f(x,a^2,\ldots,a^n)$. Apply the mean-value theorem to g:

$$f(a^1 + h^1, a^2, \dots, a^n) - f(a^1, \dots, a^n) = h^1 \cdot D_1 f(b_1, a^2, \dots, a^n).$$
 (3.5)

for some b^1 between a^1 and $a^1 + h^1$. Similarly,

$$h^{i} \cdot D_{i} f(a^{1} + h^{1}, \dots, a^{i-1} + h^{i-1}, b_{i}, \dots, a^{n}) = h^{i} D_{i} f(c_{i})$$
 (3.6)

for some c_i . Then

$$\lim_{h\to 0} \frac{|f(a+h)-f(a)-\sum_{i} D_{i}f(a)\cdot h^{i}|}{|h|}$$

$$= \lim_{h\to 0} \frac{\sum_{i} [D_{i}f(c_{i})-D_{i}f(a)\cdot h^{i}]}{|h|}$$

$$\leq \lim_{h\to 0} \sum_{i} |D_{i}f(c_{i})-D_{i}f(a)| \cdot \frac{|h^{i}|}{|h|}$$

$$\leq \lim_{h\to 0} \sum_{i} |D_{i}f(c_{i})-D_{i}f(a)|$$

$$= 0$$
(3.7)

since $D_i f$ is continuous at 0.

Example 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function $f(x,y) = xy/(\sqrt{x^2 + y^2})$ if $(x,y) \neq (0,0)$ and 0 otherwise (when (x,y) = (0,0)). Find the partial derivatives at (0,0) and check if the function is differentiable there.

3.3 The Inverse Function Theorem

(A sketch of the proof was given in class.)