
Chapter 3

Inverse Function Theorem

(This lecture was given Thursday, September 16, 2004.)

3.1 Partial Derivatives

Definition 3.1.1. If f : R
n → R

m and a ∈ R
n, then the limit

Dif(a) = lim
h→0

f(a1, . . . , ai + h, . . . , an) − f(a1, . . . , an)

h
(3.1)

is called the ith partial derivative of f at a, if the limit exists.

Denote Dj(Dif(x)) by Di,j(x). This is called a second-order (mixed)

partial derivative. Then we have the following theorem (equality of

mixed partials) which is given without proof. The proof is given later

in Spivak, Problem 3-28.

Theorem 3.1.2. If Di,jf and Dj,if are continuous in an open set containing

a, then

Di,jf(a) = Dj,if(a) (3.2)

19



We also have the following theorem about partial derivatives and maxima

and minima which follows directly from 1-variable calculus:

Theorem 3.1.3. Let A ⊂ R
n. If the maximum (or minimum) of f : A → R

occurs at a point a in the interior of A and Dif(a) exists, then Dif(a) = 0.

Proof: Let gi(x) = f(a1, . . . , x, . . . , an). gi has a maximum (or minimum)

at ai, and gi is defined in an open interval containing ai. Hence 0 = g′
i(a

i) = 0.

The converse is not true: consider f(x, y) = x2 − y2. Then f has a

minimum along the x-axis at 0, and a maximum along the y-axis at 0, but

(0, 0) is neither a relative minimum nor a relative maximum.

3.2 Derivatives

Theorem 3.2.1. If f : R
n → R

m is differentiable at a, then Djf
i(a) exists

for 1 ≤ i ≤ m, 1 ≤ j ≤ n and f ′(a) is the m x n matrix (Djf
i(a)).

Proof: First consider m = 1, so f : R
n → R. Define h : R → R

n by

h(x) = (a1, . . . , x, . . . , an), with x in the jth slot. Then Djf(a) = (f ◦h)′(aj).

Applying the chain rule,

(f ◦ h)′(aj) = f ′(a) · h′(aj)

= f ′(a) ·
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(3.3)
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Thus Djf(a) exists and is the jth entry of the 1 × n matrix f ′(a).

Spivak 2-3 (3) states that f is differentiable if and only if each f i is. So

the theorem holds for arbitrary m, since each f i is differentiable and the ith

row of f ′(a) is (f i)′(a).

The converse of this theorem – that if the partials exists, then the full

derivative does – only holds if the partials are continuous.

Theorem 3.2.2. If f : R
n → R

m, then Df(a) exists if all Djf(i) exist in

an open set containing a and if each function Djf(i) is continuous at a. (In

this case f is called continuously differentiable.)

Proof.: As in the prior proof, it is sufficient to consider m = 1 (i.e.,

f : R
n → R.)

f(a + h) − f(a) = f(a1 + h1, a2, . . . , an) − f(a1, . . . , an)

+f(a1 + h1, a2 + h2, a3, . . . , an) − f(a1 + h1, a2, . . . , an)

+ . . . + f(a1 + h1, . . . , an + hn)

−f(a1 + h1, . . . , an−1 + hn−1, an).

(3.4)

D1f is the derivative of the function g(x) = f(x, a2, . . . , an). Apply the

mean-value theorem to g :

f(a1 + h1, a2, . . . , an) − f(a1, . . . , an) = h1 · D1f(b1, a
2, . . . , an). (3.5)

for some b1 between a1 and a1 + h1 . Similarly,

hi · Dif(a1 + h1, . . . , ai−1 + hi−1, bi, . . . , a
n) = hiDif(ci) (3.6)
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for some ci. Then

limh→0
|f(a+h)−f(a)−

P

i Dif(a)·hi|

|h|

= limh→0

P

i[Dif(ci)−Dif(a) ·hi]

|h|

≤ limh→0

∑
i |Dif(ci) − Dif(a)| · |hi|

|h|

≤ limh→0

∑
i |Dif(ci) − Dif(a)|

= 0

(3.7)

since Dif is continuous at 0.

Example 3. Let f : R
2 → R be the function f(x, y) = xy/(

√
x2 + y2 if

(x, y) 6= (0, 0) and 0 otherwise (when (x, y) = (0, 0)). Find the partial deriva-

tives at (0, 0) and check if the function is differentiable there.

3.3 The Inverse Function Theorem

(A sketch of the proof was given in class.)
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