
Chapter 4

Implicit Function Theorem

4.1 Implicit Functions

Theorem 4.1.1. Implicit Function Theorem Suppose f : R
n × R

m −→
R

m is continuously differentiable in an open set containing (a, b) and f(a, b) =

0. Let M be the m×m matrix Dn+jf
i(a, b), 1 ≤ i, j ≤ m If det(M) 6= 0, there

is an open set A ⊂ R
n containing a and an open set B ⊂ R

m containing b,

with the following property: for each x ∈ A there is a unique g(x) ∈ B such

that f(x, g(x)) = 0. The function g is differentiable.

proof Define F : R
n × R

m −→ R
n × R

m by F (x, y) = (x, f(x, y)). Then

det(dF (a, b)) = det(M) 6= 0. By inverse function theorem there is an open

set W ⊂ R
n × R

m containing F (a, b) = (a, 0) and an open set in R
n × R

m

containing (a, b), which we may take to be of the form A × B, such that

F : A ×B −→ W has a differentiable inverse h : W −→ A ×B. Clearly h is

the form h(x, y) = (x, k(x, y)) for some differentiable function k (since f is of

this form)Let π : R
n×R

m −→ R
m be defined by π(x, y) = y; then π ◦F = f .

Therefore f(x, k(x, y)) = f ◦ h(x, y) = (π ◦ F ) ◦ h(x, y) = π(x, y) = y Thus

f(x, k(x, 0)) = 0 in other words we can define g(x) = k(x, 0)

As one might expect the position of the m columns that form M is im-

material. The same proof will work for any f ′(a, b) provided that the rank
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of the matrix is m.

Example f : R
2 −→ R, f(x, y) = x2 + y2 − 1. Df = (2x2y) Let (a, b) =

(3/5, 4/5) M will be (8/5). Now implicit function theorem guarantees the ex-

istence and teh uniqueness of g and open intervals I, J ⊂ R, 3/5 ∈ I, 4/5inJ

so that g : I −→ J is differentiable and x2 + g(x)2 − 1 = 0. One can easily

verify this by choosing I = (−1, 1), J = (0, 1) and g(x) =
√

1 − x2. Note

that the uniqueness of g(x) would fail to be true if we did not choose J

appropriately.

example Let A be an m × (m + n) matrix. Consider the function f :

R
n+m −→ R

m, f(x) = Ax Assume that last m columns Cn+1, Cn+2, ..., Cm+n

are linearly independent. Break A into blocks A = [A′|M ] so that M is

the m × m matrix formed by the last m columns of A. Now the equation

AX = 0 is a system of m linear equations in m + n unknowns so it has a

nontrivial solution. Moreover it can be solved as follows: Let X = [X1|X2]

where X1 ∈ R
n×1 and X2 ∈ R

m×1 AX = 0 implies A′X1 +MX2 = 0 ⇒ X2 =

M−1A′X1. Now treat f as a function mapping R
n × R

m −→ R
m by setting

f(X1, X2) = AX . Let f(a, b) = 0. Implicit function theorem asserts that

there exist open sets I ⊂ R
n, J ⊂ R

m and a function g : I −→ J so that

f(x, g(x)) = 0. By what we did above g = M−1A′ is the desired function.

So the theorem is true for linear transformations and actually I and J can

be chosen R
n and R

m respectively.

4.2 Parametric Surfaces

(Following the notation of Osserman En denotes the Euclidean n-space.) Let

D be a domain in the u-plane, u = (u1, u2). A parametric surface is simply

the image of some differentiable transformation u : D −→ En.( A non-empty

open set in R
2 is called a domain.)

Let us denote the Jacobian matrix of the mapping x(u) by
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M = (mij); mij =
∂xi

∂uj

, i = 1, 2, .., n; j = 1, 2.

We introduce the exterior product

v ∧ w; w ∧ v ∈ En(n−1)/2

where the components of v ∧w are the determinants det

(
vi vj

ui uj

)
arranged

in some fixed order. Finally let

G = (gij) = MT M ; gij =
∂x

∂ui

,
∂x

∂uj

Note that G is a 2 × 2 matrix. To compute det(G) we recall Lagrange’s

identity:

(
n∑

k=1

a2
k

) (
n∑

k=1

b2
k

)
−

(
n∑

k=1

akbk

)2

=
∑

1≤i,j≤n

(aibj − ajbi)
2

Proof of Lagrange’s identity is left as an exercise. Using Langrange’s identity

one can deduce

det(G) =

∣∣∣∣
∂x

∂u1

∧ xu2

∣∣∣∣
2

=
∑

1≤i,j≤n

(
∂(xi, xj)

∂(u1, u2)

)2
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