Chapter 5

First Fundamental Form

5.1 Tangent Planes

One important tool for studying surfaces is the tangent plane. Given a given
regular parametrized surface S embedded in R™ and a point p € S, a tangent
vector to S at p is a vector in R™ that is the tangent vector o/(0) of a
differential parametrized curve a: (—e,¢) — S with «(0) = p. Then the
tangent plane 7,(S) to S at p is the set of all tangent vectors to S at p. This
is a set of R3-vectors that end up being a plane.

An equivalent way of thinking of the tangent plane is that it is the image
of R? under the linear transformation Dz(q), where x is the map from a
domain D — S that defines the surface, and ¢ is the point of the domain that
is mapped onto p. Why is this equivalent? We can show that x is invertible.

Lo @, which is a

So given any tangent vector o/(0), we can look at v = z~
curve in D. Then o/(0) = (z 0 v)'(0) = (Dz(y(0)) o v')(0) = Dz(q)(+'(0)).
Now, 7 can be chosen so that +/(0) is any vector in R?. So the tangent plane
is the image of R? under the linear transformation Dz (q).

Certainly, though, the image of R? under an invertible linear transfor-
mation (it’s invertible since the surface is regular) is going to be a plane

including the origin, which is what we’d want a tangent plane to be. (When

27



I say that the tangent plane includes the origin, I mean that the plane itself
consists of all the vectors of a plane through the origin, even though usually
you'd draw it with all the vectors emanating from p instead of the origin.)

This way of thinking about the tangent plane is like considering it as
a “linearization” of the surface, in the same way that a tangent line to a
function from R — R is a linear function that is locally similar to the function.
Then we can understand why Dz(q)(IR?) makes sense: in the same way we
can “replace” a function with its tangent line which is the image of R under
the map t — f'(p)t + C, we can replace our surface with the image of R?
under the map Dx(q).

The interesting part of seeing the tangent plane this way is that you can
then consider it as having a basis consisting of the images of (1,0) and (0, 1)
under the map Dx(q). These images are actually just (if the domain in R?

uses u; and uy as variables) 2 5o and 8””2 (which are n-vectors).

5.2 The First Fundamental Form

Nizam mentioned the First Fundamental Form. Basically, the FFF is a way
of finding the length of a tangent vector (in a tangent plane). If w is a tangent
vector, then |w|> = w - w. Why is this interesting? Well, it becomes more

interesting if you're considering w not just as its R? coordinates, but as a

linear combination of the two basis vectors 8‘9 L and 8”” . Say w = 8u1 +b gqu'
then
2
w|® = + b2z ) . < + b2z )
| | (2 gul du22 " (51)
=a 6U1 8&1 + 2ab + b 8’M2 8u2

Let’s deal with notational differences between do Carmo and Osserman.
do Carmo writes this as Fa? + 2Fab + Gb?, and refers to the whole thing as
I,: T,(S) — R.! Osserman lets g1; = E, g12 = go1 = F (though he never

Well, actully he’s using «' and v’ instead of a and b at this point, which is because
these coordinates come from a tangent vector, which is to say they are the u’(q) and v'(q)
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makes it too clear that these two are equal), and goo = G, and then lets the
matrix that these make up be GG, which he also uses to refer to the whole

form. I am using Osserman’s notation.

Now we’ll calculate the FFF on the cylinder over the unit circle; the
parametrized surface here is x: (0,27) x R — S C R? defined by z(u,v) =
(cosu,sinu,v). (Yes, this misses a vertical line of the cylinder; we’ll fix
this once we get away from parametrized surfaces.) First we find that g—z =
(—sinu, cos u,0) and ‘3—2’ = (0,0,1). Thus ¢g;; = % . % = sin?u + cos®u = 1,
921 = g1z = 0, and gop = 1. So then |w|® = a2 + b?, which basically means
that the length of a vector in the tangent plane to the cylinder is the same

as it is in the (0,27) x R that it’s coming from.

As an exercise, calculate the first fundamental form for the sphere S?2

parametrized by z: (0,7) x (0,27) — S? with
z(0, ) = (sinf cos ¢, sin O sin ¢, cos ). (5.2)

We first calculate that % = (cosf cosp,cosfsinp, —sinf) and g—’” =

©
(— sin fsin o, sin 6 cos ¢, 0). So we find eventually that |w|* = a? + b?sin? 6.
This makes sense — movement in the ¢ direction (latitudinally) should be

“worth more” closer to the equator, which is where sin®# is maximal.

5.3 Area

If we recall the exterior product from last time, we can see that |g—i A %‘ is

g_x and 22 This is analogous to
u v

the fact that in 18.02 the magnitude of the cross product of two vectors is

the area of the parallelogram determined by

the area of the parallelogram they determine. Then | 0 }% A %| dudv is the

area of the bounded region () in the surface. But Nizam showed yesterday

of some curve in the domain D.
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that Lagrange’s Identity implies that
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Thus |% A %‘ = /911922 — 935. Thus, the area of a bounded region @ in

the surface is [ 0 V91122 — g%, dudv.

For example, let us compute the surface area of a torus; let’s let the

radius of a meridian be r and the longitudinal radius be a. Then the
torus (minus some tiny strip) is the image of z: (0,27) x (0,27) — S x
St where z(u,v) = ((a + rcosu)cosv, (a + rcosu)sinv),rsinu). Then
82 — (—rsinucosv, —rsinusinv,rcosu), and 2 = (—(a+rcosu)sinv, (a+
rcosu)cosv,0). So gi1 = 1%, g2 = 0, and goo = (rcosu + a)®. Then

V911922 — g3 = r(rcosu + a). Integrating this over the whole square, we
get

2 27
A = / / (r* cosu + ra)dudv
o Jo
2m

= ([ ereosuraa) ([ ; @)

= (r?sin2m + ra27)(27) = 47°ra

And this is the surface area of a torus!

(This lecture was given Wednesday, September 29, 2004.)
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