Chapter 7
Tangent Planes

Reading: Do Carmo sections 2.4 and 3.2

Today I am discussing
1. Differentials of maps between surfaces

2. Geometry of Gauss map

7.1 Tangent Planes; Differentials of Maps Be-

tween Surfaces

7.1.1 Tangent Planes
Recall from previous lectures the definition of tangent plane.

(Proposition 2-4-1). Let x : U C R* — S be a parameterization of a

reqular surface S and let ¢ € U. The vector subspace of dimension 2,
dx,(R?) C R? (7.1)

coincides with the set of tangent vectors to S at x(q). We call the plane
dx,(R?) the Tangent Plane to S at p, denoted by T,(S).
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Figure 7.1: Graphical representation of the map dz,, that sends 3'(0) € T, (R?
to o/(0) € T,(5).

Note that the plane dz,(R?) does not depend on the parameterization x.

However, the choice of the parameterization determines the basis on 7,(.5),
namely {(5%)(q), (55)()}, or {xu(q),%.(q)}-

7.1.2 Coordinates of w € T,(S) in the Basis Associated

to Parameterization x

Let w be the velocity vector o/(0), where o = x 0 3 is a curve in the surface
S, and the map (3 : (—e€,e) — U, B(t) = (u(t),v(t)). Then in the basis of
{xu(q),%,(q) }, we have

w = (u'(0),v'(0)) (7.2)
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7.1.3 Differential of a (Differentiable) Map Between
Surfaces

It is natural to extend the idea of differential map from T(R?) — T(S) to

Let 51, 52 be two regular surfaces, and a differential mapping ¢ C S —

Sy where V' is open. Let p € V, then all the vectors w € T,,(S;) are velocity

vectors o/(0) of some differentiable parameterized curve « : (—¢, €) — V with
a(0) = p.
Define = ¢ o a with 3(0) = ¢(p), then 3(0) is a vector of Ty, (S2).

(Proposition 2-4-2). Given w, the velocity vector 3'(0) does not depend

on the choice of a. Moreover, the map

d(pp . Tp(Sl) — T(p(p)(Sg) (73)
dipp(w) = 5'(0) (7.4)

is linear. We call the linear map dy, to be the differential of ¢ at p € S;.

Proof. Suppose ¢ is expressed in ¢(u,v) = (p1(u,v), p2(u,v)), and «a(t) =

(u(t),v(t)),t € (—¢,€) is a regular curve on the surface S;. Then

Bt) = (pa(u(t), v(t)), pa(u(t), v(t)). (7.5)

Differentiating 3 w.r.t. ¢, we have

! ¥1 Ops P2
'(0) = (| =—u/(0) + ==2'(0), =——='(0) + ==2'(0 7.6
50) = (G0 + 200, 200 + 200) @
in the basis of (X,,X,).

As shown above, ('(0) depends on the map ¢ and the coordinates of
(u/(0),2'(0) in the basis of {x,,x,}. Therefore, it is independent on the

choice of a.
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Figure 7.2: Graphical representation of the map dyp, that sends o/(0) €
Tq(Sl) to ﬁ/(0> € Tp(SQ)

Moreover, Equation 7.6 can be expressed as
Dp1 0oy 0)
/(0) — _ [ ou v u
B'(0) = dipy(w) (gi 95, ) (U,(O)> (7.7)
ou Ov

which shows that the map dy, is a mapping from 7},(S1) to T, (S2). Note
that the 2 x 2 matrix is respect to the basis {x,,x,} of T,,(51) and {X,,X,}
of T, (S2) respectively. O

We can define the differential of a (differentiable) function f : U € S — R
at p € U as a linear map df, : T,(S) — R.
Example 2-4-1: Differential of the height function Let v € R3. Con-
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sider the map

h:SCR*—R (7.8)
h(p)=v-p,p€S (7.9)

We want to compute the differential dh,(w),w € T,(S). We can choose a
differential curve a : (—e¢,€)) — S such that «(0) = p and &/(0) = w. We
are able to choose such « since the differential dh,(w) is independent on the

choice of o. Thus
ha(t)) = a(t) - v (7.10)

Taking derivatives, we have

dhy(w) = %h(&(t))]tzo =ad'(0)-v=w-v (7.11)

Example 2-4-2: Differential of the rotation Let S?> C R? be the unit
sphere
§?={(z,y,2) eR% 2> +y* + 22 = 1} (7.12)

Consider the map
R.p:R* - R? (7.13)

be the rotation of angle 6§ about the z axis. When R,y is restricted to
52, it becomes a differential map that maps S? into itself. For simplicity,
we denote the restriction map R,.p. We want to compute the differential
(dR.g)p(w),p € S*,w € T,,(S?). Let a : (—¢,€) — S? be a curve on S? such
that a(0) = p,a/(0) = w. Now

L (Rigoa®))io = Rugla(0) = Ruglw)  (7.14)
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7.1.4 Inverse Function Theorem

All we have done is extending differential calculus in R? to regular surfaces.
Thus, it is natural to have the Inverse Function Theorem extended to the
regular surfaces.

A mapping ¢ : U C S — 55 is a local diffeomorphism at p € U if
there exists a neighborhood V' C U of p, such that ¢ restricted to V is a
diffeomorphism onto the open set (V) C S,.

(Proposition 2-4-3). Let S1, Sy be reqular surfaces and ¢ : U C S; —
Sy a differentiable mapping. If dy, @ T,(S1) — Tup)(S2) at p € U is an

isomorphism, then ¢ is a local diffeomorphism at p.

The proof is a direct application of the inverse function theorem in R2.

7.2 The Geometry of Gauss Map

In this section we will extend the idea of curvature in curves to regular sur-
faces. Thus, we want to study how rapidly a surface S pulls away from the
tangent plane 7,(S) in a neighborhood of p € S. This is equivalent to mea-
suring the rate of change of a unit normal vector field N on a neighborhood
of p. We will show that this rate of change is a linear map on 7,(.S) which is

self adjoint.

7.2.1 Orientation of Surfaces

Given a parameterization x : U C R? — S of a regular surface S at a point

p € S, we choose a unit normal vector at each point x(U) by

X, N\ Xy

N(q) = m(Q)aq € x(U) (7.15)

We can think of N to be a map N : x(U) — R3. Thus, each point ¢ € x(U)

has a normal vector associated to it. We say that N is a differential field
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of unit normal vectors on U.

We say that a regular surface is orientable if it has a differentiable field
of unit normal vectors defined on the whole surface. The choice of such a
field N is called an orientation of S. An example of non-orientable surface

is M&bius strip (see Figure 3).

Figure 7.3: Mdbius strip, an example of non-orientable surface.

In this section (and probably for the rest of the course), we will only
study regular orientable surface. We will denote S to be such a surface with

an orientation N which has been chosen.

7.2.2 Gauss Map

(Definition 3-2-1). Let S C R® be a surface with an orientation N and
S2 C R? be the unit sphere

S ={(z,y,2) eR: >+ ¢ + 2" = 1}. (7.16)
The map N : S — S? is called the Gauss map.

The map N is differentiable since the differential,

AN, : T,(S) — Ty (5?) (7.17)
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at p € S is a linear map.

For a point p € S, we look at each curve a(t) with a(0) = p and compute
N o a(t) = N(t) where we define that map N : (—e,¢) — S? with the same
notation as the normal field. By this method, we restrict the normal vector
N to the curve a(t). The tangent vector N'(0) € T,(S?) thus measures the
rate of change of the normal vector N restrict to the curve a(t) at t = 0. In
other words, dN,, measure how N pulls away from N(p) in a neighborhood

of p. In the case of the surfaces, this measure is given by a linear map.

Example 3-2-1 (Trivial) Consider S to be the plane az + by + ¢z +d = 0,
the tangent vector at any point p € S is given by

(a,b,c)
N=———"7‘__ 7.18
vaz+ b2+ 2 ( )

Since N is a constant throughout S, dN = 0.
Example 3-2-2 (Gauss map on the Unit Sphere)

Consider S = S? C R3, the unit sphere in the space R3. Let a(t) =
(x(t),y(t), z(t)) be a curve on S, then we have

2ex’ + 2yy’ + 222" =0 (7.19)

which means that the vector (x,y, 2) is normal to the surface at the point
(x,y,2). We will choose N = (—xz,—y,—z) to be the normal field of S.

Restricting to the curve a(t), we have
N(t) = (=x(t), —y(t), —=(t)) (7.20)
and therefore
dN(2'(t),y/ (1), 2(t) = (=2'(t), —y/(t), =2'(t)) (7.21)
or dN,(v) = —v for all p € S and v € T,(S5?).
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Example 3-2-4 (Exercise: Gauss map on a hyperbolic paraboloid)
Find the differential dN,,—(0,0,0) of the normal field of the paraboloid S C R3
defined by

x(u,v) = (u,v,v* — u?) (7.22)

under the parameterization x : U C R? — S.

7.2.3 Self-Adjoint Linear Maps and Quadratic Forms

Let V now be a vector space of dimension 2 endowed with an inner product

()
Let A:V — V be a linear map. If (Av,w) = (v, Aw) for all v,w € V|

then we call A to be a self-adjoint linear map.

Let {e1,e2} be a orthonormal basis for V' and (ayj),4,j = 1,2 be the
matrix elements of A in this basis. Then, according to the axiom of self-

adjoint, we have
(Aei, e5) = oy = (€5, Aej) = (Aej, €5) = ay (7.23)

There A is symmetric.

To each self-adjoint linear map, there is a bilinear map B : V xV — R
given by
B(v,w) = (Av,w) (7.24)

It is easy to prove that B is a bilinear symmetric form in V.

For each bilinear form B in V, there is a quadratic form @) : V — R
given by
Q) = B(v,v),v e V. (7.25)

Exercise (Trivial): Show that

B(u,v) = 5 [Qu+v) = Qv) — Qu)] (7.26)

N | —

45



Therefore, there is a 1-1 correspondence between quadratic form and self-
adjoint linear maps of V.

Goal for the rest of this section: Show that given a self-adjoint linear
map A : V — V, there exist a orthonormal basis for V' such that, relative
to this basis, the matrix A is diagonal matrix. Moreover, the elements of
the diagonal are the maximum and minimum of the corresponding quadratic

form restricted to the unit circle of V.

(Lemma (Exercise)). If Q(z,y) = ax® = 2bzy—+cy? restricted to {(z,y); 2>+
y* = 1} has a mazimum at (1,0), then b =0

Hint: Reparametrize (z,y) using z = cost,y = cost,t € (—¢,2m + €) and

(Proposition 3A-1). Given a quadratic form @Q in V, there exists an
orthonormal basis {eq,es} of V' such that if v € V is given by v = we; + yes,
then

Q(v) = Ma® + Aoy (7.27)
where \;,i = 1,2 are the mazimum and minimum of the map Q on |v] =1
respectively.

Proof. Let A\; be the maximum of @ on the circle |[v] = 1, and e; to be

the unit vector with @(e;) = A;. Such e; exists by continuity of @) on the
compact set |[v| = 1.

Now let e5 to be the unit vector orthonormal to ej, and let Ay = Q(es).
We will show that this set of basis satisfy the proposition.

Let B be a bilinear form associated to Q. If v = ze; + yes, then
Q(v) = B(v,v) = \x? + 2bxy + \gy” (7.28)

where b = B(ey, e3). From previous lemma, we know that b = 0. So now it

suffices to show that A is the minimum of @ on |v| = 1. This is trivial since
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we know that 2% +y? = 1 and
Q) = Ma? + Aay® > Na(a? + %) = Xy (7.29)

as A2 < 1. O

If v # 0, then v is called the eigenvector of A: V — V if Av = v for

some real \. We call the A the corresponding eigenvalue.

(Theorem 3A-1). Let A:V — V be a self-adjoint linear map, then there

exist an orthonormal basis {e1,es} of V' such that
A(Gl) = )\161, A(eg) = /\262. (730)

Thus, A is diagonal in this basis and N\;,i = 1,2 are the maximum and

minimum of Q(v) = (Av,v) on the unit circle of V.

Proof. Consider Q(v) = (Av,v) where v = (z,y) in the basis of ¢;,i = 1,2.
Recall from the previous lemma that Q(z,y) = ax? + cy? for some a,c € R.
We have Q(e1) = Q(1,0) = a,Q(e2) = Q(0,1) = ¢, therefore Q(e; + e2) =
Q(1,1) =a+cand

Blei, e2) = 5[Q(e1 + e2) — Q(er) — Qle2)] =0 (7.31)

| =

Thus, Ae; is either parallel to e; or equal to 0. In any case, we have Ae; =
Aer. Using B(ep,es) = (Aeg,e1) = 0 and (Aeg,es) = Ay, we have Aey =
)\262. O

Now let us go back to the discussion of Gauss map.

(Proposition 3-2-1). The differential map dN, : T,(S) — T,(S) of the

Gauss map is a self-adjoint linear map.

Proof. Tt suffices to show that

(AN, (wy),ws) = (wy, dN,(ws)) (7.32)
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for the basis {wy, wy} of T,(S).
Let x(u, v) be a parameterization of S at p, then x,,, X, is a basis of T,,(.5).
Let a(t) = x(u(t),v(t)) be a parameterized curve in S with «(0) = p, we

have

dN,(a/(0)) = dN,(z,u'(0) + 2,0'(0)) (7.33)
= N (ult), v (0o (7.34)
= N,u'(0) + N,v'(0) (7.35)

with dN,(x,) = N, and dN,(x,) = N,. So now it suffices to show that
<NU7X’U> = <Xu> Nv> (736)

If we take the derivative of (N, x,) = 0 and (N, x,) = 0, we have

(Ny, xy) + (N, x,v) =0 (7.37)
(Ny,xy) + (N, x,u) =0 (7.38)
Therefore
<Nu7 Xv> == <N7 Xuv> = <Nv7 Xu) (739)
O
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