Chapter 9

Gauss Map 11

9.1 Mean and Gaussian Curvatures of Sur-

faces in R?

We'll assume that the curves are in R? unless otherwise noted. We start off

by quoting the following useful theorem about self adjoint linear maps over
R?:

Theorem 9.1.1 (Do Carmo pp. 216). : Let V denote a two dimensional
vector space over R. Let A:V — V be a self adjoint linear map. Then there
exists an orthonormal basis ey, ey of V such that A(e;) = A\ieq, and A(es) =
Xoes ( that is, ey and es are eigenvectors, and Ay and Ay are eigenvalues of
A). In the basis eq, e3, the matriz of A is clearly diagonal and the elements A1,
Ao, A1 > Ao, on the diagonal are the maximum and minimum, respectively,
of the quadratic form Q(v) = (Av,v) on the unit circle of V.

Proposition 9.1.2. : The differential dN, : T,(S) — T,(S) of the Gauss

map s a self-adjoint linear map.

Proof. Since dN,, is linear, it suffices to verify that (dN,(w1), ws) = (wy, dN,(ws))

for a basis wy,ws of T,(5). Let z(u,v) be a parametrization of S at P
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and z,,%, be the associated basis of T,,(S). If a(t) = z(u(t),v(t)) is a

parametrized curve in S with a(0) = p, we have

dN,(a/(0)) = dN,(z,u'(0) + 2,0'(0)) (9.1)
d

= 2 NV (u(t), v(t)l=o (9.2)

= N, (0) + N,v'(0) (9.3)

in particular, dN,(x,) = N, and dN,(z,) = N,. Therefore to prove that dN,

is self adjoint, it suffices to show that
(Ny, Ty) = (T, N,). (9.4)

To see this, take the derivatives of (N, z,) = 0 and (N, z,) = 0, relative to v

and u respectively, and obtain

<Nv7 xu) + <N7 zuv> = Oa (95)
<Nua xv) + <N7 xuv> = Oa (96)
Thus,
(Ny,y) = —(N,2ypy) = (Ny, ) (9.7)
O

Now given that dN,, is self-adjoint one can think of the associated quadratic

form.

Definition 9.1.3. The quadratic form II, defined in T,(S) by II,(v) =
—(dNy(v),v) is called the second fundamental form of S at p.

Now that we have two definitions for the second fundamental form we bet-
ter show that they’re equivalent. (Recall from the last lecture that 11,(a/(0)) =

(N(0),a"(0)) where « is considered as a function of arc length.)
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Let N(s) denote the restriction of normal to the curve a(s). We have
(N(s),d/(s)) = 0 Differentiating yields

(N(s),a"(s)) = =(N'(s), (s)). (9.8)
Therefore,

= < ,
= —(N(0),0/(0)) (9.9

which agrees with our previous definition.

Definition 9.1.4. : The maximum normal curvature ki and the minimum
normal curvature ks are called the principal curvatures at p; and the corre-

sponding eigenvectors are called principal directions at p.
So for instance if we take cylinder £y = 0 and ky = —1 for all points p.

Definition 9.1.5. : If a regular connected curve C on S is such that for all
p € C the tangent line of C is a principal direction at p, then C is said to be

a line of curvature of S.

For cylinder a circle perpendicular to axis and the axis itself are lines of

curvature of the cylinder.

Proposition 9.1.6. A necessary and sufficient condition for a connected

reqular curve X on S to be a line of curvature of S is that

for any parametrization a(t) of C, where N(t) = N(«a(t)) and X is a differ-
entiable function of t. In this case, —A(t) is the principal curvature along
o/(t)

Proof. : Obvious since principal curvature is an eigenvalue of the linear trans-

formation N'. O
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A nice application of the principal directions is computing the normal
curvature along a given direction of 7),(s). If e; and e, are two orthogonal

eigenvectors of unit length then one can represent any unit tangent vector as
v =e;cosf + egsinf (9.10)

The normal curvature along v is given by

I5(0) = —(dN,(v), )

9.11
= kicos®0 + kysin®0 (9-11)

Definition 9.1.7. Let p € S and let dN, : T,,(S) — T,(S) be the differential
of the Gauss map. The determinant of dN, is the Gaussian curvature K at
p. The negative of half of the trace of dN, is called the mean curvature H of
S at p.

In terms of principal curvatures we can write

K:hﬁH:h;b

Definition 9.1.8. : A point of a surface S is called
1. Elliptic if K > 0,

(9.12)

2. Hyperbolic if K <0,
3. Parabolic if K =0, with dN,, # 0

4. Planar if AN, =0

Note that above definitions are independent of the choice of the orienta-

tion.

Definition 9.1.9. Let p be a point in S. An asymptotic direction of S at p
is a direction of T,(S) for which the normal curvature is zero. An asymptotic
curve of S is a regular connected curve C' C S such that for each p € C' the

tangent line of C' at p is an asymptotic direction.
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9.2 Gauss Map in Local Coordinates

Let z(u,v) be a parametrization at a point p € S of a surface S, and let
a(t) = xz(u(t),v(t)) be a parametrized curve on S, with «(0) = p To simplify
the notation, we shall make the convention that all functions to appear below
denote their values at the point p.

The tangent vector to a(t) at p is o = x,u + x,v and
dN(a') = N'(u(t),v(t)) = Nyu' + Ny’ (9.13)
Since N, and N, belong to T,,(S), we may write

N, =anz, + anw, (9.14)
Ny, = apx, + azpw, .

@11 a2
dN =
Q21 A22

with respect to basis {z,, z,}.

Therefore,

On the other hand, the expression of the second fundamental form in the

basis {z,,z,} is given by

I,()) = —(dN(a), )

(9.15)
=e(u)? + 2fu'v' + g(v')?
where, since (N, z,) = (N, z,) =0
€= _<NU7‘TU> = <N7 muu); (916)
f = _<meu> = <N7 xuv> - <N7 xvu> = _<Nu;xv> (917)
g = _<wav> = <N7 xvv> (918)
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From eqns. (11), (12) we have

e [ o apl a2 E F
) [ g a Q21 A22 F G

From the above equation we immediately obtain

eg— f?
K =det(q;;) = =—=—"— 1
et(a;;) 70— 2 (9.19)
Formula for the mean curvature:
1sG —2fF F
o 1562ty (9.20)

2 EG- F?

Exercise 3. Compute H and K for sphere and plane.

Example 6. Determine the asymptotic curves and the lines of curvature of

the helicoid x = vcosu,y = vsinu, z = cu and show that its mean curvature

18 zero.
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