
Chapter 9

Gauss Map II

9.1 Mean and Gaussian Curvatures of Sur-

faces in R
3

We’ll assume that the curves are in R
3 unless otherwise noted. We start off

by quoting the following useful theorem about self adjoint linear maps over

R
2:

Theorem 9.1.1 (Do Carmo pp. 216). : Let V denote a two dimensional

vector space over R. Let A : V → V be a self adjoint linear map. Then there

exists an orthonormal basis e1, e2 of V such that A(e1) = λ1e1, and A(e2) =

λ2e2 ( that is, e1 and e2 are eigenvectors, and λ1 and λ2 are eigenvalues of

A). In the basis e1, e2, the matrix of A is clearly diagonal and the elements λ1,

λ2, λ1 ≥ λ2, on the diagonal are the maximum and minimum, respectively,

of the quadratic form Q(v) = 〈Av, v〉 on the unit circle of V.

Proposition 9.1.2. : The differential dNp : Tp(S) → Tp(S) of the Gauss

map is a self-adjoint linear map.

Proof. Since dNp is linear, it suffices to verify that 〈dNp(w1), w2〉 = 〈w1, dNp(w2)〉
for a basis w1, w2 of Tp(S). Let x(u, v) be a parametrization of S at P
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and xu, xv be the associated basis of Tp(S). If α(t) = x(u(t), v(t)) is a

parametrized curve in S with α(0) = p, we have

dNp(α
′(0)) = dNp(xuu

′(0) + xvv
′(0)) (9.1)

=
d

dt
N(u(t), v(t))|t=0 (9.2)

= Nuu
′(0) + Nvv

′(0) (9.3)

in particular, dNp(xu) = Nu and dNp(xv) = Nv. Therefore to prove that dNp

is self adjoint, it suffices to show that

〈Nu, xv〉 = 〈xu, Nv〉. (9.4)

To see this, take the derivatives of 〈N, xu〉 = 0 and 〈N, xv〉 = 0, relative to v

and u respectively, and obtain

〈Nv, xu〉 + 〈N, xuv〉 = 0, (9.5)

〈Nu, xv〉 + 〈N, xuv〉 = 0, (9.6)

Thus,

〈Nu, xv〉 = −〈N, xuv〉 = 〈Nv, xu〉 (9.7)

Now given that dNp is self-adjoint one can think of the associated quadratic

form.

Definition 9.1.3. The quadratic form IIp defined in Tp(S) by IIp(v) =

−〈dNp(v), v〉 is called the second fundamental form of S at p.

Now that we have two definitions for the second fundamental form we bet-

ter show that they’re equivalent. (Recall from the last lecture that IIp(α
′(0)) =

〈N(0), α′′(0)〉 where α is considered as a function of arc length.)
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Let N(s) denote the restriction of normal to the curve α(s). We have

〈N(s), α′(s)〉 = 0 Differentiating yields

〈N(s), α′′(s)〉 = −〈N ′(s), α′(s)〉. (9.8)

Therefore,

IIp(α
′(0)) = −〈dNp(α

′(0)), α′(0)〉
= −〈N ′(0), α′(0)〉
= 〈N(0), α′′(0)〉

(9.9)

which agrees with our previous definition.

Definition 9.1.4. : The maximum normal curvature k1 and the minimum

normal curvature k2 are called the principal curvatures at p; and the corre-

sponding eigenvectors are called principal directions at p.

So for instance if we take cylinder k1 = 0 and k2 = −1 for all points p.

Definition 9.1.5. : If a regular connected curve C on S is such that for all

p ∈ C the tangent line of C is a principal direction at p, then C is said to be

a line of curvature of S.

For cylinder a circle perpendicular to axis and the axis itself are lines of

curvature of the cylinder.

Proposition 9.1.6. A necessary and sufficient condition for a connected

regular curve X on S to be a line of curvature of S is that

N ′(t) = λ(t)α′(t)

for any parametrization α(t) of C, where N(t) = N(α(t)) and λ is a differ-

entiable function of t. In this case, −λ(t) is the principal curvature along

α′(t)

Proof. : Obvious since principal curvature is an eigenvalue of the linear trans-

formation N ′.
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A nice application of the principal directions is computing the normal

curvature along a given direction of Tp(s). If e1 and e2 are two orthogonal

eigenvectors of unit length then one can represent any unit tangent vector as

v = e1 cos θ + e2 sin θ (9.10)

The normal curvature along v is given by

IIp(v) = −〈dNp(v), v〉
= k1cos

2θ + k2sin
2θ

(9.11)

Definition 9.1.7. Let p ∈ S and let dNp : Tp(S) → Tp(S) be the differential

of the Gauss map. The determinant of dNp is the Gaussian curvature K at

p. The negative of half of the trace of dNp is called the mean curvature H of

S at p.

In terms of principal curvatures we can write

K = k1k2, H =
k1 + k2

2
(9.12)

Definition 9.1.8. : A point of a surface S is called

1. Elliptic if K > 0,

2. Hyperbolic if K < 0,

3. Parabolic if K = 0, with dNp 6= 0

4. Planar if dNp = 0

Note that above definitions are independent of the choice of the orienta-

tion.

Definition 9.1.9. Let p be a point in S. An asymptotic direction of S at p

is a direction of Tp(S) for which the normal curvature is zero. An asymptotic

curve of S is a regular connected curve C ⊂ S such that for each p ∈ C the

tangent line of C at p is an asymptotic direction.

56



9.2 Gauss Map in Local Coordinates

Let x(u, v) be a parametrization at a point p ∈ S of a surface S, and let

α(t) = x(u(t), v(t)) be a parametrized curve on S, with α(0) = p To simplify

the notation, we shall make the convention that all functions to appear below

denote their values at the point p.

The tangent vector to α(t) at p is α′ = xuu + xvv and

dN(α′) = N ′(u(t), v(t)) = Nuu
′ + Nvv

′ (9.13)

Since Nu and Nv belong to Tp(S), we may write

Nu = a11xu + a21xv

Nv = a12xu + a22xv

(9.14)

Therefore,

dN =

(
a11 a12

a21 a22

)

with respect to basis {xu, xv}.
On the other hand, the expression of the second fundamental form in the

basis {xu, xv} is given by

IIp(α
′) = −〈dN(α′), α′〉

= e(u′)2 + 2fu′v′ + g(v′)2
(9.15)

where, since 〈N, xu〉 = 〈N, xv〉 = 0

e = −〈Nu, xu〉 = 〈N, xuu〉, (9.16)

f = −〈Nv, xu〉 = 〈N, xuv〉 = 〈N, xvu〉 = −〈Nu, xv〉 (9.17)

g = −〈Nv, xv〉 = 〈N, xvv〉 (9.18)
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From eqns. (11), (12) we have

-

(
e f

f g

)
=

(
a11 a12

a21 a22

) (
E F

F G

)

From the above equation we immediately obtain

K = det(aij) =
eg − f 2

EG − F 2
(9.19)

Formula for the mean curvature:

H =
1

2

sG − 2fF + gE

EG − F 2
(9.20)

Exercise 3. Compute H and K for sphere and plane.

Example 6. Determine the asymptotic curves and the lines of curvature of

the helicoid x = v cos u, y = v sin u, z = cu and show that its mean curvature

is zero.
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