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11.1 Open Loop Congestion Control

From Powerpoint slides.

11.1.1 Erlang Loss Model

Assume that we havek channels and that calls arrive at an arrival rateλ and each call departs at a
rateµ = 1. We can then construct a Markov model for the process as shown in Figure 11.1.
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Figure 11.1. Erlang Loss Model

The balance equations for the model are as follows:

λΠ0 = Π1

λΠ1 = Π2

...

λΠk−1 = Πk

k∑
i=1

Πi = 1

The solution to these balance equations yields:

Πk =
λk

k!∑k
i=1

λi

i!

Hence, we will accept up ton connections where

(λn)k

k!∑k
i=1

(λn)i

i!

< ρε
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Suppose(λn)
k

→ ρ∗ > 1, then

P [X = k] =

(
1

ρ∗

) (
1 − 1

ρ∗

)k

Πk ≈
(

1

ρ∗

) (
1 − 1

ρ∗

)k

< ρε

We can obtainn by solving (
1 − k

λn

)k (
k

λn

)
< ρε

The main difference between circuit switching and packet switching is that the former has fixed
capacity channels and a finite number of channels.

11.1.2 Small Buffer Model

In the small buffer model, we haven sourcesXi, 1 ≤ i ≤ n. Loss occurs when
∑n

i=1Xi(t) > C.
We assume thatXi(t) are independent identically distributed random variables and we want to find
n such that

P [
n∑

i=1

Xi(t) > C] < ρε

Although we often apply the Central Limit Theorem:
∑n

i=1Xi ∼ N(nµ, nσ2) when we wish
to approximateP [

∑n
i=1Xi > µX̄+cn], this approximation does not work well when we are work-

ing in the tail region. Hence we use the Chernoff Bound.

Assume thatMx(s) = logE(esX) exists. Then for any random variableY ,

P [Y ≥ 0] = P [esX ≥ 1]

≤ E[esX ] (∀ s ≥ 0)

P [
n∑

i=1

Xi ≥ 0] ≤ E[es
�

Xi]

= E[esXi]n

1

n
logP [

n∑
i=1

Xi ≥ 0] ≤ Mx(s)

logP [

n∑
i=1

Xi ≥ 0] = logE[es(
�

Xi−C)]

≤ nMx(s) − sC

Therefore, to obtainn, we letnMx(s) − sC ≤ ρε, and finds which minimizes the RHS of:

n ≤ log ρε + sC

Mx(s)
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11.1.3 Large Buffer Model

In this model, the input is given byA = A(t) : t ≥ 0. Supposeψ(s) exists, where

ψ(s) = lim
t→∞

1

t
logE[esA(t)]

and the system serves work at rateM .

Theorem 11.1 (Glynn & Whitt - 1994). Wheres∗ is the root ofψ(s) = sM ,

1

λ
logP [W > x] → −s∗

A good approximation is given by:

P [W > x] ≈ Ce−s∗x

Where there arek sources, each with the cumulative moment generating functionsψi(s),

ψ(s) =

n∑
k=1

nkψk(s)

To keep the loss probability less thane−δx, we let

ψ(s) − δM ≤ 0

⇒
n∑

k=1

nk
ψk(s)

δ
≤ M
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