18.996: Topics on Internet Research Problems Lecture 3

Tracking Distributed Objects

Lecturer: R. Rajaraman Scribe: M.T. Hajiaghayi and H. Zhou

1 Introduction

The data tracking problem is one of the most basic problems in the Internet research area. Assume we have
aset 1---m of objects and a set 1---n of nodes. As shown in Figure 1, we consider the whole Internet as a
communication service such that each two nodes ¢ and j can communicate via the Internet, but with some
cost ¢;5. In these notes, when we say two nodes ¢ and j in the network are neighbors, we mean i and j are

near each other by some logical measure such as latency, not necessarily next-hop neighborhood.

Figure 1: The Internet as a communication service

We also assume that each node contains a set of copies of objects. Now, our goal is to find a (nearby)
copy of the requested object, insert or delete object copies and finally update control information as nodes

join or leave the system. More precisely, we have the following operations.
1. find(u,z) in which node u issues a request to locate and obtain a copy of object x;
2. insert(u,z) in which node u inserts a new copy of object x into its storage space;
3. delete(u,z) in which node u deletes an existing copy of object from its storage space;
4. join(u) in which node u joins the system; and
5. leave(u) in which node u leaves the system.

We note that the insert and delete operations refer to the nodes’ public storage space. Thus, insert(u,z)
makes a new copy of z at u available for access to all the network nodes, while delete(u,z) makes an existing
available copy of = at w unavailable to the rest of the network. We also note that following a join or leave

operation, it is quite likely that we have a series of insert or delete operations.

Tracking Distributed Objects-1

In tracking distributed objects, we assume that all nodes are equal and have the same power. For example,
we do not have some central or special nodes which are more powerful than others. The main reason behind
this assumption is that in real distributed systems like the Internet, nodes can join or leave very frequently
and often we cannot assume that some nodes are very powerful. In addition, this assumption causes our
system to be more fault-tolerant, e.g. if each node shuts-down abruptly, then we have only a leave operation
and we can adapt the whole system very easily.

The data tracking problem has many applications. First, consider the DNS in which we need to map
names to IP addresses. In this system, our objects are IP addresses whose copies are stored in some nodes
of the Internet. Given a name, we want to find a copy of the object which contains its IP address. A second
application is in peer-to-peer netwroks where each node acts as both a client and a server, and we need to
provide efficient access to shared data using lightweight procedures. Again basic operations in these networks
can be considered special cases of the operations mentioned above. Other examples are replicated servers,
in which the join and leave operations may be ignored, and tracking mobile users, in which we have only
one copy of each node (each node contains a unique object) [AP95].

Current, popular commercial systems using peer-to-peer file sharing systems are Napster, Gnutella and
Freenet. We discuss Gnutella and Freenet more in the next two subsections. Selected academic research
projects in this area are Oceanstore at University of California at Berkeley which is conducted by Kubiatowics
et al., Chord at Massachusetts Institute of Technology which is conducted by Stoica et al. and Content
Addressable Network (CAN) again at University of California at Berekeley which is conducted by Ratnasamy

et al.

1.1 Gnutella

Gnutella network is a decentralized, unmanaged system for sharing, searching, and acquiring files. The
Gnutella network supports sharing and searching of any file type unlike Napster which only allows users
to share certain types of files, namely MP3s. However Gnutella does not offer any extra functionality, like
chatting. Gnutella is a peer-to-peer system, with client software that also acts as a server. Gnutella was
created by a group of developers at Nullsoft, a subsidiary of America Online.

Suppose that a node v wants to find an object like a web-page which contains some keywords. Gnutella
works by flooding protocol in which node X sends its request to all its neighbors and then these neighbors
send the request to all their neighbors until the request is reached by a node Y containing the object and
then node Y returns a copy of the object to X (see Figure 2). In this file-system, each request is satisfied by
a nearby copy and thus it is efficient in terms of the find cost. The flooding process is somehow controlled in
the system, that is, each node has a searchable index in a database which prevents flooding via some wrong
paths. However this system is not scalable and in the worst-case, the entire network may be flooded. Also

for eliminating loops, the system uses a time-to-live (TTL) field, which may prevent excessive flooding.

Tracking Distributed Objects-2

Figure 2: Finding an object in Gnutella

1.2 Freenet

Free Network (Freenet) is a large-scale peer-to-peer decentralized network which pools the power of member
computers around the world to create a massive virtual information store open to anyone to publish or
view information of all kinds freely. Freenet dynamically replicates and relocates information in response to
demand to provide efficient service and minimal bandwidth usage regardless of load. In addition, Freenet is
private and secure, i.e. information stored in Freenet is protected by strong cryptography to guard against
malicious tampering or counterfeiting. This network is an enhanced Open Source implementation of the
system described by Ian Clarke’s 1999 paper “A distributed decentralized information storage and retrieval
system.” The first version (Version 0.1) of this system was released in March 2000.

To find an object, Freenet uses a DFS of the network, which results in a sequential version of flooding
in the worst-case (Figure 3 illustrates a sequence of query and response messages in Freenet). Here we have
a trade-off between efficiency and scalability, i.e. a request may have to be forwarded along a long chain of

nodes before being satisfied, but little congestion is caused due to a single request.

Figure 3: Finding an object in Freenet

1.3 Measures

Communication cost between two nodes is an idealized function of latency, bandwidth, queue size, etc. For

Tracking Distributed Objects-3

analysis, we assume that our cost function is a metric static cost. The cost of an operation is the total

communication cost of messages it sends to conduct the operation.
cost of find(u,z)
cost(u,v) '

The stretch of insert and delete operations are defined similarly [BFR95]. For join and leave operations, we

Let v be a node nearest to u that has a copy of . We define stretch of find(u,z) operation as

use the number of nodes that are updated as a measure instead of communication cost.

Memory overhead is defined to be the maximum amount of control information stored at a node of the
network. Here by control information, we mean the list of nodes to which node forwards requests or the list
of objects of which the node is aware. We also define the static load of a node to be the number of objects it

is aware of and dynamic load of a node to be the number of find operations affecting the node per unit time.

2 Algorithms for data tracking

In this section, we introduce three algorithms for efficient data tracking. The first one is a simple algorithm
which presents the main ideas. The second algorithm is due to Awerbuch and Peleg [AP90]. Awerbuch and
Peleg motivated the idea of locality preserving in which, given that a task concerns only a subset of the sites
located in a small region in the network, one would like the execution of the task to involve only sites in or
around that region and the cost of the task to be proportional to its locality level. The concepts of sparse
neighborhood covers and hierarchical clustering decompositions (see Subsection 2.2) were first introduced in
this paper. Using these concepts, they prove near-optimal bounds on the stretch factor. We see the main
disadvantage of the algorithm when we have join and leave operations. The second algorithm, which is
a simpler flat tracking scheme, is due to Plaxton et al. [PRR99]. The paper considers partially locality
preserving and static load balancing and forms the data location component of Oceanstore (see Subsection
2.3). Due to time constraints, we were unable to cover recent work on data tracking algorithms, including

the Chord and CAN projects.

2.1 A simple algorithm: a tree-based distributed tracking

One naive approach for data tracking is embedding a tree into the network and then each node informs all
its ancestors about its own objects (see Figure 4). Now for find(u,z), we forward the request through the
path from u to the root of the tree until we find the first ancestor which contains control information about
object x and then we retrieve the object from an appropriate node. In fact, the tree and its embedding
determine the location of control information among the network nodes. This approach has some problems.
The first one is that the root of the tree must have control information about all objects. In other words, we
have memory overhead Q(m). The second problem is that the embedding may not respect network locality.
For example, consider a ring of nodes 0,--- ,n — 1 in which ¢;; is the number of hops between node ¢ and j
in the ring plus one (the cost function is metric). One can observe that in every tree embedding there are

two nodes of distance one in the ring whose distance in the network is Q(n). In the next Subsection, we

Tracking Distributed Objects-4

consider the sparse neighborhood covers introduced by Awerbuch and Peleg [AP90] to overcome the second
problem. The main idea here is to try to embed multiple “tree-like structures” in the network. This idea

further was considered by Bartal et al. in their paper on hierarchically well-separated trees [Bar98].

Figure 4: Tree-based distributed tracking

2.2 Sparse neighborhood covers

The r-neighborhood of a vertex u is defined as N,(u) = {v|c(u,v) < r}. Recall that c¢(u,v) is the distance
between u and v in the network. A sparse r-neighborhood cover M,. is a collection of sets (also called clusters)

of vertices Sy, ---,.5; with the following properties:
1. for every vertex v there exists some 1 < i <[such that N,.(v) C S;;

2. diameter of each cluster S; (the diameter of the subgraph induced by S;), 1 < i <, is in O(r logn);

and
3. each node belongs to O(logn) clusters.

A sparse meighborhood covers data structure is a family of sparse r-neighborhood covers for different
values of 7. Applications often require the construction of sparse r-neighborhood covers for O(log(Diam(G))
successively doubled values, namely » = 1,2,4,8,---. Here G is our network graph.

The algorithm for finding a sparse r-neighborhood cover M, is as follows.
e Initially all the nodes are unmarked.
e Repeat the following until all nodes are remowved.

1. Pick an unmarked node u.
2. Find smallest j such that 2|Nj,.(u)| > |N(jy1),(u)|.
3. Either j <logn exists or Nyiogn(u) includes all nodes; in the latter case, set j = logn.

4. Include set N(j;1),(u) in cover.

Tracking Distributed Objects-5

5. Mark all nodes in N(;;1),(u) and remove all nodes in Nj,(u) from further consideration.

6. If there exists any unmarked node u, go to step 1, otherwise first unmark all nodes and then go

to step 1.

First we observe that, when a node v is remowved, its N,(v) is included in some cluster (see Figure 5).
Using the fact that in each cluster at least half of the nodes will be removed, one can prove that each
node will be in at most O(logn) clusters (see the details in [ABCP99]). Linal and Saks [LS93] showed how a
distributed randomized algorithm can be used to compute sparse covers. In this approach, each node u starts
with N,.(u) as a cluster. Then in each round, every cluster grows simultaneously, but some clusters stop
because of the others (the ties are broken randomly). The running time of this algorithm is poly-logarithmic

time. The reader is referred to the original paper for more details.

Figure 5: Growing regions to obtain an sparse neighborhood cover

Now, we assume that we have sparse neighborhood covers data structure which contains all Msi, 1 <i <
log(Diam(G)). Our solution for data tracking is based on the hierarchy of covers in the network. For each
cluster S in each cover My:, we elect a leader [(S) and provide internal routing services by constructing a
tree routing component for S rooted at [(S). For each i, we associate with every node u a home cluster,
home;(u) € Msyi, which is the cluster containing Noi(u). Thus each node has log(Diam(G)) home clusters.
Now, consider find(u,z) operation. Node w first tries using the lowest level cover M1, i.e. forward its
request for object = to its first home cluster leader, [(home;(u)). If this trial fails, i.e. [(home;(u)) does
not know any control information about z, u retries sending its message, this time using cover M2, and so
on, until it finally succeeds. Suppose a node v nearest to w which contains z has distance d to u. Since v is
contained in Nyioga1 (1) and diameter of each cluster in My is at most 2¢logn, we have:

[log d]
cost of find(u,x) = O(Z 2tlogn) = O(dlogn).
i=0

Thus the stretch of find is O(logn).
For insert(u,z) or delete(u,), node u informs the leader of each cluster containing u in M, for all

1 < i <log(Diam(G)). The worst-case cost for these two operations is in O(Diam/(G) polylog(n)); however,

Tracking Distributed Objects-6

an amortized stretch of O(polylog(n)) can be achieved [BFR95]. The cost of join and leave operations is in
Q(n), since we need to update all nodes in the worst case. Finally, since some leader nodes need to store
control information of all objects, the memory overhead of this algorithm is in Q(m). In the next, Subsection

we present an algorithm with a better memory overhead.

2.3 A Flat Tracking Scheme

If, for each object in the system, we maintain a logical tree that randomly maps to the nodes(hopefully
respecting locality), then the set of objects will be evenly distributed among the nodes and we will have
good load balance. However, there continues to be a scalability problem in that each node must know
its neighbors in the tree for every possible object tree. To address this, we present a simple flat track-
ing scheme that uses randomized embedding of logical trees to achieve static load balance while requiring
low memory overhead. For a restricted class of cost functions, it also achieves asymptotically efficient cost.

This scheme forms the data location component of Oceanstore, a data tracking system developed at Berkeley.

In this scheme, unique IDs are assigned to nodes and objects. The node whose bits match the largest
prefix of the object ID becomes “root” in that object’s tree and is responsible for information necessary to
locate at least one copy of the object. The thrust of this is to route by successively matching a longer prefix
of the object ID from node to node until we arrive at one that knows about a copy of the object searched

for. Note that random node IDs mean that the tracking scheme is topology-sensitive.

Tree for object 000

Figure 6: Object access tree

As shown in figure 6, the parent of a node u is the closest node(by some network metric, e.g. latency)
whose ID matches the object’s ID in a longer prefix than u’s ID. For example, node 011 matches 000 in a
prefix of length 1, better than node 110 which matches no prefix at all. As 011 is the closest such node to
110, it becomes the parent of 110 in the access tree for 000. Similarly, node 000(root for object 000) happens
to be closest to 010, and so becomes the direct parent of 010, so that 010 would be able to get to object 000

in one hop.

Tracking Distributed Objects-7

——— Tree for object 000
— Tree for object 001

Figure 7: Overlapping neighbors

Clearly, as shown in figure 7, there will be overlap among the neighbors of a given node across different
access trees. In fact, with a little thought, one can see that maintaining the closest node whose ID matches
the object’s ID in a longer prefix for all objects is equivalent to simply maintaining the closest node whose
ID matches the current node’s ID in the first ¢ bits and differs in the (i + 1)st bit (assuming n a power of
2). Thus, the total number of distinct neighbors a node has to store is only logn. A typical neighbor table

is shown in figure 8.

level (log n - 1)

node y nearest to x such that
y[0..i-1] = x[0..i-1] and y[i] differs from]

level i y

level 0

Neighbor Table for node x

Figure 8: Node neighbor table

In addition to neighbors, a node also maintains object pointers to objects that it knows about. An object
request is routed from node to node, successively matching longer node ID prefixes, until it reaches one that
has a pointer to the object. If the object is in the system at all, then the root node for that object will point
to it, so that the lookup is guaranteed to terminate. Any pointers not at root are like cached queries: they

sometimes alleviate the need to go all the way to the root.

When a node wu inserts an object copy into the system, it propagates the location of the copy through the
object’s search path, leaving an object pointer at each node along the path that is unaware of the object. If
it encounters a node w that points to an existing copy that is closer to w than w, it changes nothing at w

and the propagation ends. Otherwise, if u is closer, it updates the pointer at w and continues the propagation.

Tracking Distributed Objects-8

This flat tracking scheme has several advantages. The randomized ID assignment distributes the set of
object pointers evenly over the nodes. The lookup scheme maintains the neighbor tables at logn size. Thus,
the system scales well. Under certain assumptions about communication cost functions, the system can also
be shown to be efficient in that the expected access cost is within a constant factor of optimal. In particular,
we require that for every node x and real r > 1, the ratio of the number of nodes within distance(cost) 2r

of z to the number of nodes within distance r is bounded from above and below by constants. [PRR99]

There are also several limitations. As mentioned above, the efficiency proofs depend on restricted cost
functions. It does not take into consideration dynamic load on nodes, and the overhead of forwarding the
requests through several nodes may be significant. The system has no distributed scheme for dynamic node
joins and leaves. Furthermore, the number of nodes affected by a join or leave may be large, from a practical

standpoint.

3 The Load Assignment Problem

(Notes essentially from Adrian Vetta’s presentation)

INPUT:
e Aset S={s1,s9,...,8,} of sources.

Associated with a sink s; is a load of size ;.

A set T = {t1,t2,...,t,.} of sinks.

Associated with a sink ¢; is a cost function ¢;().
e There is an edge ¢j if a load from s; may be routed to ;.

OUTPUT: A minimum cost assignment of the loads to sinks.

A solution is an assignment x = {x1, Z2,..., 2y} where x. is the load on edge e.

THE CosT FUNCTIONS

Given a source s;, let F; be the set of sinks incident to s;. Given a sink ¢;, let I'; be the set of sources

incident to ¢;. Let X; =, . @i; be the total load at sink ¢;.

For a sink ¢; we will assume that the cost function ¢;():

e Is a function of X, i.e. ¢;(X;)

Tracking Distributed Objects-9

Figure 9: Load assignment problem

e Has decreasing marginal costs ¢} (X).

Note that this second property is just concavity, since c}/(X;) < 0.

A MATHEMATICAL FORMULATION

tjET
Z Tij = l; Vs; €8
t;el;
3.1 A Hardness Result
SET COVER
INPUT: Elements {vy,va,...,v,} and sets {S1,S55,...,S,}.

OuTPUT: A collection S of sets of minimum cardinality that covers every element.

It is known that the Set Cover problem can not be approximated to within an O(logn) factor.

REDUCTION TO LOAD ASSIGNMENT

There is an approximation preserving reduction from Set Cover to the Load Assignment problem:
e There is a source s; for each element v;.
e There is a sink ¢; for each set S;.

e There is an edge ¢j if the element v; is in the set S;.

The load [; is one for each source.

Tracking Distributed Objects-10

e The marginal costs at sink j are (1,0,0,...,0).

Theorem. The Load Assignment problem can not be approximated to within an O(logn) factor.l

3.2 The Structure of a Solution

OBSERVATION
We may view solutions as permutations of {1,2,...,7}. To see this, note that some optimal solution z has

the following two properties:
Property I. For any source s;, all of its load [; is assigned to a single sink.

Proof. Suppose not. Let some of the load be assigned to the sink ¢; and some to sink t,. Now if
¢ (X1) < éy(X2) then, by concavity, the total cost may be reduced by re-routing the load from ¢» to ;.
Similarly if ¢,(X,) < ¢} (X1).H

From now on we may assume that the load at each source is one.

3.3 Saturated Sinks

Sink ¢; is saturated if each source in I'; assigns its load to ¢;.
Property II. At least one sink is saturated.
Proof. Suppose not. Then, by concavity,

Js; € T'y st load [y is routed to 1) # t1 = c'f(l)(Xf(l)) < i (X1)

Jsy € T’y st load I5 is routed to tg(o) # to = c’f(2) (Xf2)) < ch(X2)

Consider a directed graph with a node for each sink, and arcs (4, f(j)). Then as each no sink is saturated,

each vertex has out degree one. Thus the graph contains a cycle C. Summing around the cycle, we obtain

Yo G Xrgy) <D (X))

t;eC t;eC

Tracking Distributed Objects-11

Let k be the last node in the cycle, so that f(k) is the node we started out from. The above telescopes to
give
¢k (Xi) < iy (Xpwy)

which is a contradiction. H

WLOG assume that ¢; is saturated. Then by similar arguments:
Jt, that is saturated with respect to S — I'y
Jt3 that is saturated with respect to S —T'y —T's etc ...

3.4 A Greedy Algorithm

Calculate the average saturated cost of each sink, i.e. %
Assign '« to ¢+, the sink with the minimum average saturated cost.

Repeat on S —I';« until each source is covered

RUNNING TIME
The running time of the greedy algorithm is linear in the number of edges. It takes O(m) time to calculate
the initial average saturated costs and O(m) time, over all subsequent iterations, to update these average

saturated costs.

3.5 Analysis of Greedy Algorithm

The optimal solution T = {t7,5,...,t;} has cost ¢(T™*) = OPT.

The greedy solution T' = {t1,ta,...,ts} covers n; sources in step 4.

Theorem. Greedy is an O(logn)-approximation algorithm.

Proof. Note that OPT/n is just a weighted average of sink average costs. Thus, we see that

At step 1 some sink in T* has average cost < 2%

At step 2 some sink in T* has average cost < %

oPT

T
At step s some sink in 7 has average cost < T T

Now, by concavity, the average saturated cost of a sink is at most the average cost. Thus, the greedy

algorithm has a total cost

Tracking Distributed Objects-12

OPT OPT OPT

c(T) <my + N9 g
n n—ny n—my — - —MNg—1
1 1 1
<1l4+=-+-+---+—)oPT
<(tytgt +n)
=H,opr = O(logn)oPT

where in the second inequality we’ve used the fact that

1 N 1
n—1 n—m+1

n 1
m - n

3.6 Some Special Cases

CONCAVE MARGINAL CoST FUNCTIONS

The actual performance guarantee of greedy is é where

IRV < min 1 ¢ (IT51)

min
c;(0) |yl ioci(1) Ty

G = min

As a corollary, for example, if the marginal cost function is concave then we have a 2-approximation algorithm.

CONSTANT NUMBER OF “TRICKY” SINKS

If there is only a fixed number k of sinks with non-constant marginal cost functions then we can solve

the problem optimally.

ConvEX CosT FUNCTIONS

If the cost function is convex then the optimal solution can be found by a minimum cost flow algorithm.

3.7 Open Problems

PROBLEM I

What if there are capacities at the sinks?

PROBLEM II

What if the cost functions are more complex?

PROBLEM II1

What if there is added structure regarding source-sink links?

Tracking Distributed Objects-13

4 Another Open Problem: Online Assignment

This is essentially the same as the load assignment problem with two key differences: the assignment must

be performed online, and assigning unit load from client i to server j incurs c(i,j) cost.

One might consider two possible server load models: a capacity C; for server j, or a function f; of load

that gives additional cost for each unit load that is served by j.

Demandd(i)

Clients O O O O O

c(ij)

Servers

Figure 10: Online load assignment

Tracking Distributed Objects-14

References

[ABCP99] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear cost sequential and distributed

[AP90)]

[AP95)

[Bar98|

[BFR95)

[LS93]

[PRR99)

constructions of sparse neighborhood covers. SIAM Journal of Computing, 28:263-277, 1999.

B. Awerbuch and D. Peleg. Sparse partitions. In Proceedings of the 31st Annual IEEE Symposium
on Foundations of Computer Science, pages 503-513, 1990.

B. Awerbuch and D. Peleg. Ounline tracking of mobile users. Journal of the ACM, 37:1021-1058,
1995.

Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 161-168, May
1998.

Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management.
Journal of Computer and Systems Sciences, 51:341-358, 1995.

N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13:441-454, 1993.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated objects in
a distributed environment. Theory of Computing Systems, 32:241-280, 1999.

Tracking Distributed Objects-15

