On Tracking Distributed Objects

Rajmohan Rajaraman

Northeastern University

/ The Data Tracking Problem

A

e A data tracking scheme.

o Insert/delete object copies.

Peleg 90, Guyton-Schwarz 95, ...]|.

_

o Find a (nearby) copy of the requested object.

o Update control information as nodes join/leave the system.

e Basic problem in distributed systems [Mullender-Vitanyi 88, Awerbuch-

~

/

-~

e find(u,x): Issued by node u to locate a copy of object x.

Data Tracking Operations

e insert(u,x): Node u inserts a new copy of object x.
o delete(u,r): Node u deletes an existing copy of object x.
e join(u): Node u joins the system.

e lcave(u): Node u leaves the system.

-~

e DNS:

o find maps names to IP addresses.

Applications

e Peer-to-peer networks:

o Fach node 1s a client and a server.

o Need to provide efficient operations with lightweight nodes.

e Replicated servers.

o The join and leave operations may be ignored.

e Tracking mobile users.

o No copies.

\ s

/ Current Methods in P2P File-Sharing \

e Popular commercial systems:

o Napster
o Gnutella

o Freenet [Clarke et al 00]

e Sclected academic research projects:

o Oceanstore [Kubiatowicz et al 00]
o Chord [Stoica et al 01]
o Content Addressable Network (CAN) [Ratnasamy et al 01]

_ 5 /

_

e Controlled flooding.

Gnutella

e Efficient in terms of find cost: each request is satisfied by a nearby copy.

e Not scalable: in the worst-case, the entire network may be flooded.

o Susceptible to denial-of-service attacks.

o A time-to-live (TTL) field eliminates loops and may prevent excessive

flooding.

e “Sequential version” of flooding.

e Trades off efficiency for scalability.

o Little congestion is caused due to a single request.

o Inefficient: A request may have to be forwarded along a long chain of
nodes before being satisfied.

o Need to query neighbors in order of “likelihood” of holding the object.

_ | /

-~

e Communication cost of find, insert, and delete operations.

Measures

o cost is an idealized function of latency, bandwidth, queue sizes, etc.
o For analysis, assume a static cost; also often assume that it is a metric.

o Let v be the “nearest node” to u that has a copy of x.
Cost of find(u, x)

cost(u, v)

Stretch of find(u,x) =

e Join and leave operations:

o Communication cost incurred.

o Number of nodes that are updated.

\ ;

-~

e Memory overhead: The maximum amount of control information stored
at a node of the network.

Measures, contd.

o List of nodes that the node forwards requests to.

o List of objects that the node is aware of.

e [Load at a node:

o Static load: number of objects it is aware of.

o Dynamic load: number of find operations affecting the node per unit
time.

~

/

/ Outline of Ideas \

e Sparse neighborhood covers |[Awerbuch-Peleg 90]:
o Addresses locality.

o One can prove near-optimal bounds on stretch factor.
o Resultant network decomposition has many potential applications.

o Somewhat complicated and may be hard to update when nodes leave/join.

e A simpler flat tracking scheme [Plaxton et al 97]:
o Partially addresses locality:.

o Addresses static load balancing.

e Consistent hashing and variants [Chord, CAN]:

o Adaptive to node joins/leaves.

o Addresses static load balancing.

_ : /

-~

_

A Tree-Based Distributed Solution

A

/
AN

/\

AN

A

e Embed a tree into the network:

o The embedding must respect network locality.

o The tree and its embedding determine the location of control informa-

tion among the network nodes.

o Forward the request up the tree until a copy is located, e.g., in DNS.

11

~

/

-~

Embedding Trees into Arbitrary Metrics

e [lasy to see that tree embeddings may not preserve locality.

e Fmbed multiple “tree-like structures”:

o Sparse neighborhood covers [Awerbuch-Peleg 90].
o Hierarchically well-separated trees |Bartal 96].

12

~

-~

e For each node uw and cost ¢, define

N(u,c) ={v : cost(u,v) < c}.

Sparse Neighborhood Covers

e A sparse 2'-cover M; is a collection of sets of nodes (clusters)

o For each u, some S in M; contains N (u,2").
o Diameter of each cluster is O(2'logn).

o Each node belongs to O(logn) clusters.

\ 1

-~

e Repeat the following until all nodes are “removed”.

o Find smallest j such that 2| N (u, 52%)| > |N(u, (5 + 1)2Y)|.

Finding Sparse 2!-Covers

o Either j < logn exists or N(u,2'logn) includes all nodes; in latter
case, set 7 = logn.

o Include set N(u, (5 4+ 1)2') in cover.

o Mark all nodes in N (u, (j +1)2") and “remove” all nodes in N (u, j2")
from further consideration.

o Pick an unmarked node v and go to step 1.

o If no unmarked node, then unmark all nodes and go to step 1.
e When a node v is “removed”, N(v,2) is in some cluster.

e Fach node is in O(logn) clusters.

\ y

~

-~

Sparse 2-Cover Computation

e A distributed randomized algorithm can be used to compute sparse covers
[Linial-Saks 91].

e Runs in polylogarithmic time whp.

\ ?

~

/

-~

Sparse Covers and Data Tracking

e Compute sparse 2'-cover for all 7 < log(Diam).
e Flect a leader in each cluster.

e find: For each 7, node u queries leader of “home cluster” in 2*-cover, until

object located.

e insert/delete: For each 7, node u informs leader of each cluster containing

u 1 2'-cover.

16

~

Finding an Object

r

N~

O(dlogn) diameter

e Cost of find 1s logd
O(_ggj (d/2") logn) = O(dlogn).

1=0

\ i

-~

e Stretch of find is O(logn).

Complexity of Measures

e Insert/delete:
o Worst-case cost is O(Diampolylog(n))

o Amortized stretch of O(polylog(n)) can be achieved |[Bartal-Fiat-Rabani
92].

e Memory overhead: Some “leader” nodes need €2(m) storage, where m is
the number of objects.

e Join/leave: Requires €2(n) nodes to be updated in worst case.

\ 1

~

/ A Collection of Trees \

PN }

e For each object, have a logical tree.
e Randomly map the logical tree among the nodes, respecting locality:.
e The set of object copies that need to be tracked is evenly distributed.

e Scalability problem: Each node has to know its neighbors in each tree.

_ : /

/ A Simpler Flat Tracking Scheme

e A randomized embedding of logical trees that achieves (static) load bal-
ancing and can be stored with low memory overhead.

e For a restricted class of cost functions, it achieves asymptotically efficient
cost.

e Forms the data location component of Oceanstore.

\ 0

~

/ Object and Node IDs

e Assign unique IDs to objects and nodes.

e Object-location information will be assigned to nodes by matching IDs.

o For example, the node whose bits match the largest prefix of object 1D
is a “root” node for the object; it has information about at least one
copy of the object.

o If nodes have random IDs, the tracking scheme is topology-sensitive.

\ .

~

_

An Access Tree

000

001

i

PN

11

01

longer prefix than u’s id.

Tree for object 000

22

010

111

PN

100

e The parent of a node u is the closest node whose id matches A’s id in a

/

Overlapping Access Trees

000
001
011 010
110 101 111 100
—— Treefor object 000
— Treefor object 001

e The neighbors in different access trees overlap; the degree of any node
across all across trees is log n.

\ 2

/

/ Neighbor Tables

level (logn — 1)

node y nearest to x such that

" y[0..i — 1] = 2[0..¢ — 1] and y[i] # z]i]

level ¢ Y

level O

Neighbor Table for node «

e For 0 <1 < logn, the 7-neighbor of x is the nearest node y such that
o y|0..¢ — 1] matches z|0..7 — 1].
o ylj] is different from x[j].

\ g

_

Pointer Lists

000

001

i

PN

11 01

Tree for object 000

exists) in the subtree rooted at the node.

25

010

111

PN

100

e For each object, the list contains a pointer to a copy of the object (if one

/

-~

_

Inserting an Object Copy

0100¢

1101Q
00000

D

0000

0001

00000

00000

26

e Follow the search path along the tree, updating pointer lists, until a pointer
to the object found.

~

/

Accessing an Object

\ l
\ /
\ \

\
\ ‘\\ \
. - W
\
/
Y2

e Object inserted at x and then requested at y.

e Follow the search path, querying both primary and secondary neighbors
until a pointer to object found.

\ .

/ Properties of the Tracking Scheme

e Scalable: The overhead incurred due to control information is small.

o The neighbor table is small; by construction, the total number of
“neighbors” of a node is log n.

o Due to the randomized ID assignment, the total set of pointers is evenly
distributed.

e Ffficient under certain assumptions about the communication cost func-
tion.

o The expected access cost is within a constant factor of the optimal cost.

o The expected number of nodes that need to be updated on a join/leave
is O(logn).

\ 2

~

-~

-

Restricted Class of Cost Functions

e For every node x and real » > 1, the ratio of # nodes within cost 2r of x

to # nodes within cost 7 is bounded from above and below by constants.

min{dN(z,r),n} < N(z,2r) < AN(z,r).

e Applies to fixed-dimension meshes, constant-degree trees, and fat-trees.

e Purely “local” restriction and does not require any hierarchical decompo-

sition of the network or regular topology.

29

~

-~

e The efficiency claims hold for a restricted class of cost functions.

Limitations

e Does not consider dynamic load on the nodes.

e The overhead of forwarding the requests through several nodes may be
significant.

e Join/leave:

o No distributed scheme for handling these operations.

o In practice, the number of nodes affected by a join/leave may be large.

\ .

/ Consistent Hashing and Chord \

e A peer-to-peer lookup service [Stoica et al 01].

o Using consistent hashing, map keys to nodes.

o Elach node has a small number of “neighbors” for forwarding requests
it cannot resolve.

e Adaptive to node joins/leaves.

e Correctness in presence of inconsistent forwarding information.

_ : /

_

Mapping keys to nodes

request to successor.

e If key and node IDs are selected uniformly at randomly, then asymptoti-
cally balanced load with high probability.

e One possible forwarding mechanism: if key information not stored, forward

32

/

/ Neighbors
1
\\

—

8

e Number of neighbors for each node is at most m, the number of bits in
the key identifiers.

\ .

/

Looking up a Key

e Forward request for key to closest predecessor in the neighbor table.

e Number of hops is O(logn) whp.

\ ’

-~

e New node u has an existing node use the lookup procedure to find all u’s
neighbors.

Node Joins/Leaves

o Number of communication steps is O(mlogn) whp.

o Can reduce to O(log* n) whp since if m > logn, many of the intervals
would be empty.

e Similarly can identify nodes whose neighbor tables need to include u now,
in O(log*n) communication steps.

\ .

-~

e A variant of the consistent hashing idea [Ratnasamy et al 01].

Content Addressable Network (CAN)

e A logical d-dimensional torus is the underlying space into which keys are
mapped.

e The allocation of keys to nodes is given by the partitioning determined by
the nodes.

e Fach new node selects a random point and splits the zone which contains
this point.

e When a node leaves, two adjacent zones are merged.

\ .

~

_

Illustration of CAN

e Suppose new node 7’s random choice is a point in zone 2.

o Zone 2 is identified using the routing scheme already in place, starting
from any node.

o Zone 2 is split into two halves and 7’s neighbors are {1, 2, 4, 5}.

37

/

-~

e The lookup algorithms discussed thus far do not take into account current
load while mapping requests.

Balancing Dynamic Load on Replicas

e In P2P file sharing:

o New copies of popular objects will automatically get created, hence
keeping average load small.

o However, the nodes holding the key-location associations may get over-

loaded.

e Also needed if new copies of objects are not being created or flash crowds
arise in a “localized region”.

e (Questions:

o How do we maintain dynamic load information in a distributed setup?

o If we have all the load information, how do we assign the requests?

\ .

~

/

-~

_

An Online Assignment Problem

Clients O O O O O

Servers

increases load on j.

e T'wo possible load models:

o There is a capacity C; for server j.

o There is a function f; of load that gives additional cost for each unit

demand that is served by j.

c(ij)

39

Demand d(i)

e Assigning unit demand at client ¢ to server j incurs a cost of ¢(7, 7) and

~

/

/ Related Variant

o If we assume that the f;’s are concave, then we have a variant of the
assignment problem discussed earlier.

o Fach demand is assigned to a single server.

o The problem is NP-hard, by a reduction from set cover.

e Generalization of facility location.

\ 0

~

