On Tracking Distributed Objects

Rajmohan Rajaraman

Northeastern University

The Data Tracking Problem

- A data tracking scheme.
 - Find a (nearby) copy of the requested object.
 - Insert/delete object copies.
 - Update control information as nodes join/leave the system.
- Basic problem in distributed systems [Mullender-Vitányi 88, Awerbuch-Peleg 90, Guyton-Schwarz 95, ...].

Data Tracking Operations

- find(u, x): Issued by node u to locate a copy of object x.
- insert(u, x): Node u inserts a new copy of object x.
- delete(u, x): Node u deletes an existing copy of object x.
- join(u): Node u joins the system.
- leave(u): Node u leaves the system.

Applications

- DNS:
 - \circ find maps names to IP addresses.
- Peer-to-peer networks:
 - Each node is a client and a server.
 - Need to provide efficient operations with lightweight nodes.
- Replicated servers.
 - The *join* and *leave* operations may be ignored.
- Tracking mobile users.
 - No copies.

Current Methods in P2P File-Sharing

- Popular commercial systems:
 - o Napster
 - o Gnutella
 - Freenet [Clarke et al 00]
- Selected academic research projects:
 - Oceanstore [Kubiatowicz et al 00]
 - o Chord [Stoica et al 01]
 - Content Addressable Network (CAN) [Ratnasamy et al 01]

Gnutella

- Controlled flooding.
- \bullet Efficient in terms of find cost: each request is satisfied by a nearby copy.
- Not scalable: in the worst-case, the entire network may be flooded.
 - Susceptible to denial-of-service attacks.
 - A time-to-live (TTL) field eliminates loops and may prevent excessive flooding.

Freenet

- "Sequential version" of flooding.
- Trades off efficiency for scalability.
 - Little congestion is caused due to a single request.
 - Inefficient: A request may have to be forwarded along a long chain of nodes before being satisfied.
 - Need to query neighbors in order of "likelihood" of holding the object.

Measures

- Communication cost of *find*, *insert*, and *delete* operations.
 - \circ cost is an idealized function of latency, bandwidth, queue sizes, etc.
 - For analysis, assume a static cost; also often assume that it is a metric.
 - \circ Let v be the "nearest node" to u that has a copy of x.

Stretch of
$$find(u, x) = \frac{\text{Cost of } find(u, x)}{cost(u, v)}$$
.

- Join and leave operations:
 - Communication cost incurred.
 - Number of nodes that are updated.

Measures, contd.

- Memory overhead: The maximum amount of control information stored at a node of the network.
 - List of nodes that the node forwards requests to.
 - List of objects that the node is aware of.
- Load at a node:
 - Static load: number of objects it is aware of.
 - Dynamic load: number of find operations affecting the node per unit time.

Outline of Ideas

- Sparse neighborhood covers [Awerbuch-Peleg 90]:
 - Addresses locality.
 - One can prove near-optimal bounds on stretch factor.
 - Resultant network decomposition has many potential applications.
 - Somewhat complicated and may be hard to update when nodes leave/join.
- A simpler flat tracking scheme [Plaxton et al 97]:
 - Partially addresses locality.
 - Addresses static load balancing.
- Consistent hashing and variants [Chord, CAN]:
 - Adaptive to node joins/leaves.
 - Addresses static load balancing.

A Tree-Based Distributed Solution

- Embed a tree into the network:
 - The embedding must respect network locality.
 - The tree and its embedding determine the location of control information among the network nodes.
 - Forward the request up the tree until a copy is located, e.g., in DNS.

Embedding Trees into Arbitrary Metrics

- Easy to see that tree embeddings may not preserve locality.
- Embed multiple "tree-like structures":
 - Sparse neighborhood covers [Awerbuch-Peleg 90].
 - Hierarchically well-separated trees [Bartal 96].

Sparse Neighborhood Covers

• For each node u and cost c, define

$$N(u,c) = \{v : \mathit{cost}(u,v) \leq c\}.$$

- A sparse 2^i -cover M_i is a collection of sets of nodes (clusters)
 - \circ For each u, some S in M_i contains $N(u, 2^i)$.
 - \circ Diameter of each cluster is $O(2^i \log n)$.
 - \circ Each node belongs to $O(\log n)$ clusters.

Finding Sparse 2^i -Covers

- Repeat the following until all nodes are "removed".
 - \circ Find smallest j such that $2|N(u,j2^i)| \geq |N(u,(j+1)2^i)|$.
 - \circ Either $j \leq \log n$ exists or $N(u, 2^i \log n)$ includes all nodes; in latter case, set $j = \log n$.
 - \circ Include set $N(u, (j+1)2^i)$ in cover.
 - Mark all nodes in $N(u, (j+1)2^i)$ and "remove" all nodes in $N(u, j2^i)$ from further consideration.
 - \circ Pick an unmarked node u and go to step 1.
 - If no unmarked node, then unmark all nodes and go to step 1.
- When a node v is "removed", $N(v, 2^i)$ is in some cluster.
- Each node is in $O(\log n)$ clusters.

Sparse 2^i -Cover Computation

- A distributed randomized algorithm can be used to compute sparse covers [Linial-Saks 91].
- Runs in polylogarithmic time whp.

Sparse Covers and Data Tracking

- Compute sparse 2^{i} -cover for all $i \leq \log(Diam)$.
- Elect a leader in each cluster.
- find: For each i, node u queries leader of "home cluster" in 2^i -cover, until object located.
- insert/delete: For each i, node u informs leader of each cluster containing u in 2^{i} -cover.

Finding an Object

• Cost of find is

$$O(\sum_{i=0}^{\lceil \log d \rceil} (d/2^i) \log n) = O(d \log n).$$

Complexity of Measures

- Stretch of find is $O(\log n)$.
- Insert/delete:
 - \circ Worst-case cost is O(Diam polylog(n))
 - Amortized stretch of O(polylog(n)) can be achieved [Bartal-Fiat-Rabani 92].
- Memory overhead: Some "leader" nodes need $\Omega(m)$ storage, where m is the number of objects.
- Join/leave: Requires $\Omega(n)$ nodes to be updated in worst case.

A Collection of Trees

- For each object, have a logical tree.
- Randomly map the logical tree among the nodes, respecting locality.
- The set of object copies that need to be tracked is evenly distributed.
- Scalability problem: Each node has to know its neighbors in each tree.

A Simpler Flat Tracking Scheme

- A randomized embedding of logical trees that achieves (static) load balancing and can be stored with low memory overhead.
- For a restricted class of cost functions, it achieves asymptotically efficient cost.
- Forms the data location component of Oceanstore.

Object and Node IDs

- Assign unique IDs to objects and nodes.
- Object-location information will be assigned to nodes by matching IDs.
 - For example, the node whose bits match the largest prefix of object ID is a "root" node for the object; it has information about at least one copy of the object.
 - If nodes have random IDs, the tracking scheme is topology-sensitive.

An Access Tree

Tree for object 000

• The parent of a node u is the closest node whose id matches A's id in a longer prefix than u's id.

Overlapping Access Trees

• The neighbors in different access trees overlap; the degree of any node across all across trees is $\log n$.

Neighbor Tables

Neighbor Table for node x

- For $0 \le i < \log n$, the *i*-neighbor of x is the nearest node y such that
 - y[0..i-1] matches x[0..i-1].
 - $\circ y[j]$ is different from x[j].

Pointer Lists

Tree for object 000

• For each object, the list contains a pointer to a copy of the object (if one exists) in the subtree rooted at the node.

Inserting an Object Copy

• Follow the search path along the tree, updating pointer lists, until a pointer to the object found.

Accessing an Object

- \bullet Object inserted at x and then requested at y.
- Follow the search path, querying both primary and secondary neighbors until a pointer to object found.

Properties of the Tracking Scheme

- Scalable: The overhead incurred due to control information is small.
 - \circ The neighbor table is small; by construction, the total number of "neighbors" of a node is $\log n$.
 - Due to the randomized ID assignment, the total set of pointers is evenly distributed.
- Efficient under certain assumptions about the communication cost function.
 - The expected access cost is within a constant factor of the optimal cost.
 - \circ The expected number of nodes that need to be updated on a join/leave is $O(\log n)$.

Restricted Class of Cost Functions

• For every node x and real $r \ge 1$, the ratio of # nodes within cost 2r of x to # nodes within cost r is bounded from above and below by constants.

$$\min\{\delta N(x,r),n\} \le N(x,2r) \le \Delta N(x,r).$$

- Applies to fixed-dimension meshes, constant-degree trees, and fat-trees.
- Purely "local" restriction and does not require any hierarchical decomposition of the network or regular topology.

Limitations

- The efficiency claims hold for a restricted class of cost functions.
- Does not consider dynamic load on the nodes.
- The overhead of forwarding the requests through several nodes may be significant.
- Join/leave:
 - No distributed scheme for handling these operations.
 - In practice, the number of nodes affected by a join/leave may be large.

Consistent Hashing and Chord

- A peer-to-peer lookup service [Stoica et al 01].
 - Using consistent hashing, map keys to nodes.
 - Each node has a small number of "neighbors" for forwarding requests it cannot resolve.
- Adaptive to node joins/leaves.
- Correctness in presence of inconsistent forwarding information.

Mapping keys to nodes

- If key and node IDs are selected uniformly at randomly, then asymptotically balanced load with high probability.
- One possible forwarding mechanism: if key information not stored, forward request to successor.

Neighbors

ullet Number of neighbors for each node is at most m, the number of bits in the key identifiers.

Looking up a Key

- Forward request for key to closest predecessor in the neighbor table.
- Number of hops is $O(\log n)$ whp.

Node Joins/Leaves

- New node u has an existing node use the lookup procedure to find all u's neighbors.
 - \circ Number of communication steps is $O(m \log n)$ whp.
 - Can reduce to $O(\log^2 n)$ whp since if $m \gg \log n$, many of the intervals would be empty.
- Similarly can identify nodes whose neighbor tables need to include u now, in $O(\log^2 n)$ communication steps.

Content Addressable Network (CAN)

- A variant of the consistent hashing idea [Ratnasamy et al 01].
- A logical d-dimensional torus is the underlying space into which keys are mapped.
- The allocation of keys to nodes is given by the partitioning determined by the nodes.
- Each new node selects a random point and splits the zone which contains this point.
- When a node leaves, two adjacent zones are merged.

Illustration of CAN

- Suppose new node 7's random choice is a point in zone 2.
 - Zone 2 is identified using the routing scheme already in place, starting from any node.
 - \circ Zone 2 is split into two halves and 7's neighbors are $\{1, 2, 4, 5\}$.

Balancing Dynamic Load on Replicas

- The lookup algorithms discussed thus far do not take into account current load while mapping requests.
- In P2P file sharing:
 - New copies of popular objects will automatically get created, hence keeping average load small.
 - However, the nodes holding the key-location associations may get overloaded.
- Also needed if new copies of objects are not being created or flash crowds arise in a "localized region".
- Questions:
 - How do we maintain dynamic load information in a distributed setup?
 - If we have all the load information, how do we assign the requests?

An Online Assignment Problem

- Assigning unit demand at client i to server j incurs a cost of c(i, j) and increases load on j.
- Two possible load models:
 - \circ There is a capacity C_i for server j.
 - \circ There is a function f_j of load that gives additional cost for each unit demand that is served by j.

Related Variant

- If we assume that the f_j 's are concave, then we have a variant of the assignment problem discussed earlier.
 - Each demand is assigned to a single server.
 - The problem is NP-hard, by a reduction from set cover.
- Generalization of facility location.