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Guessing Secrets

Listen, Do you want to know a secret,
Do you promise not to tell, whoa oh, oh.
Closer, Let me whisper in your ear,
Say the words you long to hear...

— Beatles,
Abbey Road Studios, London
February 11, 1963

5.1 Motivation

Today we will discuss issues that arise in DNS. First let’s review the DNS mechanism.

Figure 5.1. the DNS mechanism

Akamai has thousands of webservers which cash the foo.com web page, and the goal of
Akamai’s authorative nameserver is to distribute the foo.com load somewhat evenly among
these webservers. As nameservers cache IP addresses, each nameserver will direct all its
clients to the same IP address. Thus each nameserver drags a load proportional to the
number of its clients. However, we do not know the number of clients of a given nameserver.
Furthermore, it is not enough to simply count the number of clients because some clients
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have more load than others. What we would really like is to find a mapping of nameservers
to clients. And to complicate matters, we must remember that a client may use more than
one nameserver.

Let’s review the information we are given. Akamai’s authorative nameserver knows the
IP addresses of all the nameservers that submit foo.com queries. The Akamai webservers
know the IP addresses of all the clients that request the foo.com webpage. Now how can we
discover which clients were directed to each webserver by which nameserver?

1. IP addresses in the same block

Perhaps we can assume that clients use nameservers whose IP addresses are in the
same block as their own. As IP addresses in the same block tend to be geographically
close, this assumption seems reasonable. However, it is unfortunately just not true.

2. Direct each nameserver to a unique webserver and see which clients show up

Clearly this approach works, but there are a myriad of implementation problems. The
first major problem is that there are many more nameservers than webservers. Of
course, we can try to sidestep this obstacle by repeating this procedure several times,
keeping track of the set of clients at each webserver, taking some intersections, etc.
Another major problem is that clients aren’t continously requesting foo.com content,
so in each iteration of this procedure, Akamai must wait a while to see all the clients
that show up.

3. Dynamically create a fake link that encodes client IP on the foo.com webpage

In this solution, the Akamai webserver dynamically adds a one pixel gif to the foo.com
webpage with the web address jclient ip;.foo.com. As the client renders the webpage,
it will make another request to its nameserver for the IP address of jclient ip;.foo.com.
When its nameserver asks Akamai’s authorative nameserver to resolve this address,
the authorative nameserver can associate this client to this nameserver.

This solution solves our problem and appears to work even though it creates a bit of
additional traffic. However, each nameserver now needs to make a unique query for
every of its clients. Even if the time-to-live of the reply is zero, some faulty nameserver
implementations will try to cache all these unique queries. This floods the cache of
the nameserver, and, in some cases, actually crashes the nameserver. While this may
appear to be the nameserver’s problem, Akamai needs to market its solutions and it is
hard to market a solution that breaks existing albeit faulty infrastructure.

4. Statically force a client to reveal each bit of his nameserver’s IP address

In this solution, Akamai adds 32 one pixel gifs to the foo.com webpage with the
addresses i.foo.com for 0 < 7 < 32. Akamai also designates 64 webservers, ¢; for
0<i<32, j€{0,1}, to host the one pixel gifs. The Akamai authorative nameserver
answers a query for i.foo.com with webserver i; where j is the ith bit of the IP ad-
dress of the questioning nameserver. By observing which of the 64 webservers a client
visited, we can now reconstruct the client’s nameserver’s IP.
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This solution solves the problems of the last solution because now each nameserver will
cache just a constant number (i.e. 32) of IP addresses, namely i.foo.com for 0 < ¢ < 32.
However, this solution no longer solves our problem when a client uses more than one
nameserver.

5.2 Problem Statement

Notice in the last solution, what we really do is ask the client 32 yes/no questions regarding
his nameservers’ IP addresses. Namely, we ask 32 questions of the form “What is the ith
bit of your nameserver’s IP address?”. The client then selects one of his nameservers and
answers our question truthfully. This strategy is a little bit naive and also quite weak. For
example, if the client had a nameserver with an all-zeros I[P address and a nameserver with
an all-ones IP address, he could answer our 32 questions in any of the 23? possible ways.
Thus this strategy allows us to reach no conclusion regarding his nameservers’ IP addresses.
In this section, we will extend this strategy by asking more questions. In this way, we hope
we will be able to conclude more information about the possible nameservers of the client.
First we give a formal definition of our problem:

Definition 1. The Guessing Secrets Problem: Alice (the adversary) has aset S = {X1,... , Xy}
of k secrects, taken from a universe () of size N. Bob asks Alice a series of “questions”
{F|F; : Q@ — {0,1}}. For each F;, Alice selects some X; € € and returns {F;(X;)}. Bob
then outputs a set GG of sets of secrets which is his guess concerning the possibilities for the
set S.

There are two kinds of strategies for Bob, namely adaptive and oblivious.

Definition 2. In an adaptive strategy, Bob can design questions based on previous answers.
In this case, Bob first asks question ¢; and Alice answers a,. Then Bob asks question ¢, and
Alice answers a, and so on.

Definition 3. In an oblivious strategy, all of Bob’s question must be asked in advance of
any of Alice’s answers. Now, Bob asks qi,qo, ... ,q, and Alice then answers all of them
A1, A2, ... ,Qpy.

In this definition, Alice corresponds to the client, his nameservers, and Akamai’s au-
thorative nameserver. Alice’s secrets correspond to her nameservers’ IP addresses. Bob
corresponds to Akamai’s webservers. The questions of an oblivious Bob are embedded as
links in the original foo.com webpage and the answers are computed by Akamai’s authora-
tive nameserver upon queries from the client’s nameservers. An adaptive Bob can also be
implemented in this setting by embedding the link for question ¢; in the page for question
qi—1-

We say Bob has solved the guessing secrets problem if he has learned as much as is
theoretically possible concerning S. Observe that Bob can never hope to learn with certainty
more than one of Alice’s secrets, since Alice can always answer every question using the same
X;. We can in fact completely characterize the amount of information Bob can hope to learn
about S, but first we will develop a model of this problem.

9-3



MIT 18.996 Lecture 5 — March 6 Spring 2002

Definition 4. The Graph Model: Let Ky denote the complete hypergraph with edge sets
of size k on the set of N vertices of ). A set of secrets S = {X1,... , Xy} corresponds to an
edge (Xi,...,X};) of Ky. Each question F; : Q — {0,1} induces a cut F; '(0) of Ky.

Notice in this model, an answer b € {0,1} to the question F; implies at least one of the
X; € S arein F;'(b). Thus all edges in F; ' (1 — b) can be eliminated as possibilities for the
set of secrets. Therefore, no matter how adversarial Alice acts, Bob can always ask questions
that will reduce the resulting graph to a set of intersecting edges (i.e. a star or a triangle for
k = 2), for if there were disjoint edges Bob could add a question which separates the edges
and thereby eliminate one of them. Furthermore, Bob can not hope to learn more than this.

Now we can say formally that Bob solves the guessing secrets problem if he returns
an intersecting set of edges G that contain S. We call a strategy of Bob that returns an
intersecting set for any adversary a separating strategy, and the set of edges returned a
surviving set.

5.3 Solutions

Clearly oblivious and adaptive separating strategies do exist. For example, Bob can simply
ask the O(N¥) questions corresponding to all cuts which separate one edge from the rest of
the graph. However, this strategy is a bit discouraging because the information we are trying
to learn is of size O(klog N). In order for our strategy to be considered efficient, we would
like to ask just poly(k,log N) questions each of size O(klog N). Furthermore, in order to
recover the surviving set from Alice’s questions, Bob must spend O(N*) computation time
(list all k-sets and eliminate inconsistent ones). In order for our strategy to be considered
invertible, we would like to be able to recover the surviving set in just poly(k,log N) time.

But just how efficient a strategy can we design? In [?], Chung et al. proved the following
theorems for the case with £ = 2 secrets:

Theorem 1. Let f(N) be the smallest number of questions Bob must ask in an adaptive
separating strategy for an initial set €2 of size N. Then,

3logy(N) —5 < f(N) < 4logy(N) + 3, for N > 2

Theorem 2. Let f(N) be the smallest number of questions Bob must ask in an oblivious
separating strategy for an initial set () of size N. Then,

F(N) < (c + of1) logy N
where ¢ = 3/log 2 = 15.57....

The proofs of the upper bounds in these theorems are either non-constructive or construct
strategies that have large question sizes and not invertible. Chung et al. explicitly construct
several strategies, but they are all less than optimal in some sense. Recently, Micciancio et
al. [?] presented an adaptive strategy with the optimal O(log N) questions and an O(log* N)
time algorithm for recovering k = 2 secrets.
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Today, we will see a result published by Alon et al. [?] that gives an invertible oblivious
strategy with the optimal O(log N) questions for k& = 2 secrets. This strategy depends
heavily on error-correcting codes. To motivate the use of error-correcting codes in problems
like guessing secrets, we first present a similar problem 20 questions, and solve it with error-
correcting codes.

5.3.1 20 questions with a liar

In the 20 questions game a player, Bob, tries to discover the identity of some unknown secret
drawn by a second player, Alice, from a large space of N secrets. Bob is allowed to ask Alice
binary (Yes/No) questions about the secret. Alice answers each question truthfully according
to her secret. The goal of Bob is to learn the secret by asking as few questions as possible. If
the N possible secrets are associated with [log N|-bit strings, then clearly [log N'| questions
are both necessary and sufficient to discover the secret. The guessing secrets problem is a
generalization of this game in which Alice picks not one, but k secrets, and answers questions
truthfully according to a secret of her choice.

There is another way of generalizing 20 questions game. In this generalization, Alice
again has just one secret x, but she is allowed to lie, say, 10% of the time. Or, alternatively,
Alice always answers truthfully, but she transmits her answers through a noisy channel which
corrupts 10% of the bits. Error-correcting codes are an obvious solution to this problem.
Bob can pick an appropriate code C' with encoding function F and decoding function D.
He asks Alice about each bit of F(z). The resulting string F(z) will be a codeword with at
most 10% error in it. Thus, if Bob uses an error-correcting code with error recovery better
than 10%, then he can recover the secret D(F/(z)). Luckily for Bob, we know of codes that
can correct strings with less than 50% error.

We would like to apply the same approach to the guessing secrets problem. We consider
one secret X; as the “true” secret, and all other secrets as lies. We then try to apply Bob’s
error-correcting code strategy. However, there is a problem. Namely, even with just two
secrets, Alice can lie 50% of the time if we don’t pick our code carefully. Clearly, there are
no error-correcting codes with 50% error recovery. But, we have a stronger assumption than
in the liar game. Alice’s lies must be consistent! That is, Alice’s lies are just bits of k — 1
other codewords. We will use this fact to define a class of codes, and encoding and decoding
strategies for these codes.

5.3.2 Separating codes

We will concern ourselves with the 2-secret guessing problem (i.e. k& = 2). For each se-
cret © € €, we denote the sequence of answers to the questions F; on x by C(z) =<
Fi(z), Fy(x), ..., F,(x) >. We call mapping the mapping C' : Q — {0, 1}" thus defined as the
code used by the strategy. There is clearly a one-one correspondence between oblivious strate-
gies {F;} and such codes C' (defined by F;(z) = C(x);, where C(x); is the i’th bit of C(x)).
Now we can refer to a strategy using its associated code C. We say that a code C is (2,2)-

separating if for every 4 — tuple of distinct secrets a, b, ¢, d € €2, there exists at least one value
of i, 1 < i < n, called the discriminating indez, for which C'(a); = C(b); # C(c); = C(d);.
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Note that if Bob asks questions according to a separating code C', then for every two disjoint
pairs of edges (a, b) and (¢, d), Bob can rule out one of them based on the answer which Alice
gives on the i’th question, where 7 is a discriminating index for the 4-tuple (a, b, ¢, d). In fact
it is easy to see that the (2, 2)-separating property of C is also necessary for the correspond-
ing strategy to solve the 2-secrets guessing game. Thus, there exists a (2, 2)-separating code
C :Q — {0,1}" if and only if there exists an oblivious strategy for Bob to solve the 2-secret
guessing problem. Now all that remains is to find good (2, 2)-separating codes. We use the
following theorems and definitions to design such codes efficiently:

Theorem 3. Let C be an [n, m]y binary linear code with minimum distance d and maximum
distance my. Assume further that d,m; satisfy the condition d > 22 Then, C' is a (2,2)-
separating code.

Definition 5. A binary linear code of block length n is an e-biased code if every non-zero

codeword in C' has Hamming weight between (3 — €)n and (3 + €)n.

From above theorem and definition, one can easily conclude that if a binary linear code

C' is e-biased for some € < 1—14, then C' is (2,2)-separating. A simple explicit construction of

e-biased codes can be obtained by concatenating an outer Reed-Solomon code with relative
distance (1 — 2¢) with an inner binary Hadamard code. However, this and other similar

constructions encode our strings of length log N into codewords of length O(log:zN), more

than the desired O(log N) length. However, in [?] Alon et al. proved:

Lemma 1. For any € > 0, there exists an explicitly specified family of constant rate binary
linear e-biased codes.

From this lemma and above discussion, we see that there is an explicit oblivious strategy
for the 2-secrets guessing game that uses O(log V) questions. The problem of above method
is that it is not invertible. Next we will design an invertible strategy that recovers secrets
poly(log N) time.

5.3.3 List Decoding

Again, we consider the 2-secrets guessing game (i.e. k = 2).

Theorem 4. Suppose that C is a [em,m]y binary linear code which is e-biased for some
constant € < ﬁ. Suppose further that there exists a list decoding algorithm for C' that
corrects up to a 1 + & fraction of errors in time O(T(m)). Then, C' is (2,2)-separating code
that gives a strategy to solve the 2-secrets guessing game for a universe size N = 2™ in

O(T(log N) + log® N) time using clog N questions.

Proof (Sketch): Suppose Bob uses the code C' = [n = em, m], mentioned above for his
strategy. If Alice’s secrets are {Xi, Xy} and her answers to Bob are a = (a1, as,...,a,),
then for each i, we must have either C(X}); = a; or C'(X3); = a;. As C' is e-biased , C'(X;)
and C(X,) must agree in at least (3 — €)n coordinates. Furthermore, since Alice doesn’t lie,
at least half of the (% + €)n remaining coordinates must agree with one of the codewords,
say C'(X1). This means a is a Hamming distance of at most (1 + £)n from C'(X;).

This is the algorithm for Bob to recover the secrets:

2-6



MIT 18.996 Lecture 5 — March 6 Spring 2002

1. Perform list decoding of the code C' using the assumed algorithm to find the set
S ={x€{0,1}""A(a,C(x)) < (= + =)n}

where A(z,y) denotes the Hamming distance between z and y.

2. For each z € S, let A be the set of coordinates where C'(x) and a agree. Find the set of
possible matching secrets S, by erasing the coordinates A of a and using an erasure list
decoding algorithm. As our code is a linear code, this amounts to finding all solutions
to a linear system of equations. If S, is empty (i.e. there is no 2’ such that Alice could
have answered a with secrets (x,z')), then remove z from S. Otherwise, represent S,
by a set of basis vectors.

3. Return the set G = {{z,2'} : x € S,2’ € S, } as the guess.

Notice a set of secrets {z,z'} is in G if and only if it is consistent with the answer a, so
in particular Alice’s real secrets {X;, Xo} € G. Furthermore, as € < ﬁ, theorem ?7? implies
C' is (2,2)-separating and therefore G is an intersecting family. This shows the correctness
of Bob’s strategy.

The efficiency of the inversion follows as list decoding returns a constant number of
solutions, so we must solve just a constant number of linear systems. Furthermore, due to
our clever representation of S, our output is polynomial in log N even when the number of
vertices in our intersecting family is O(N) (e.g. the star with (N — 1) non-hubs obtained
when a = C(x) for some z). O

For detailed proof of correctness and analysis of this algorithm, see [?]. Also, notice if you
don’t believe theorem ?7?, you can use the naive graph-cut approach on the constant-sized
set S of vertices returned by the list decoding. If both secrets were in S, then the result will
be a star or a triangle. If just one of the secrets was in S, then the result will be a star. If
the result is a star, extending the star to the whole set €2 will give a correct solution G.

The only remaining problem is to prove the existence of the e-biased codes used in theo-
rem ??7. The existence of such codes is a standard result of coding theory.

Theorem 5.1. For every positive constant « < 1/2, the following holds. For all small
enough € > 0, there exists an explicit asymptotically good family of binary linear e-biased codes
which can be list decoded up to an « fraction of errors in O(n%@)o(l)) time.

A sketch of this result may be found in [?7].

5.4 Open Questions

There are numerous questions about the guessing secrets problem that remain open, most
of which involve some generalization or restriction of the problem. We conclude with a list
some of the open questions.
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1. k-Secret Guessing Problem

In the last two sections, we analayzed strategies for k = 2 secrets. A natural question
is to analyze the case for £ > 2. Note that the list decoding solution no longer
works because Alice’s answer may be quite far from the codewords of her secrets.
The hypergraph model and accompanying naive algorithm show that strategies do
exist for £ > 2. But, as stated, the naive strategy is impractical. We do have some
negative results for this problem. In particular, Alon et al. showed [?] oblivious
strategies require at least Q(2?log N) questions and adaptive strategies require at
least ay log N — ay log a, questions where

1 (2k — 2
— 2k 24 - .
e +2<k—1>

Furthermore, they present an efficient (but not invertible) oblivious strategy for this
problem based on 2k-universal families of binary strings that uses at most ck25* log N
questions for some constant ¢ independent of k.

2. Relax Solution Condition

We can consider a restricted form of the problem in which we only require Bob to return
a guess set G such that any k-set of secrets S that is consistent with Alice’s answers
intersects G in at least one element [?]. In this case, there is an efficient invertible
oblivious strategy for Bob based on concatenated codes and the same list decoding
ideas presented here. It may be possible to improve this result, and algorithms for
adaptive strategies should be studied.

3. Non-binary Questions

Another way to generalize our problem is to allow Bob to ask questions with more
than two answers. Clearly, this makes the problem much easier for Bob. For example,
in the 2-secret problem, Bob can now always determine at least one of Alice’s secrets
(he can eliminate triangles by asking a tertiary question). However, it is not known
how non-binary questions affect the problem for £ > 2.

4. Fixed Number of Rounds

We can also restrict the problem by allowing Bob only a fixed number of rounds in the
adaptive case. If we allow Bob to ask more than one question per round, this problem
becomes a sort of hybrid between the oblivious and adaptive strategies. How can we
combine the solutions for oblivious and adaptive strategies to get an optimal strategy
in this case?

5. Lying

Finally, we can allow Alice to lie some fraction of the time. That is, for say 10% of the
questions, Alice can give any answer she chooses, independent of her secrets. Can we
find codes such that this new power doesn’t help Alice too much? How about in the
adaptive case?
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