MIT 18.996: Topic in TCS: Internet Research Problems Spring 2002
Lecture 13 — May 1, 2002

Lecturer: Michael Mitzenmacher Scribe: Omar Aftab, Omar Bakr

13.1 Introduction

The distribution of content to large, world-wide audiences presents major challenges to
content providers. The data to be delivered ranges from large files shared infrequently to
smaller files that are continually accessed. Data distribution applications span from sharing
critical enterprise data to downloading large software and popular games. Popular streaming
applications include on-demand downloads, and the live streaming of high-bandwidth video
and audio. All these applications require a combination of reliability, speed and scalability.

As we have seen in previous lectures, the early Internet was designed for slow connection
speeds and small file transfers. Technological improvements have led to faster equipment
and greater bandwidth, but the Web is still plagued with network congestion, packet loss
and latency issues.! These problems are growing as more and more users access increasingly
large files - and as more and more content providers start to host them.

Even with improved technology, and Akamai’s Edge Delivery systems that do much to
mitigate these issues, a new paradigm for data-delivery may eventually be needed. This
lecture discusses novel data delivery techniques that exploit advances in coding theory to
optimize the delivery of data.

13.2 Current Delivery Solutions

There are currently two broad alternatives for delivering popular content over the Internet.
Neither is ideal, each having its own set of strengths and weaknesses.

13.2.1 Point-to-Point Solutions

In the traditional point-to-point solution for content delivery, each user initiates a TCP con-
nection with the server, which creates an unique, independent data stream just for him. The
user then proceeds to download the file at his own rate, prompting the server to retransmit
any packets that get corrupted or lost. This simple scheme allows users to:

e Download On Demand: A major advantage of this scheme is that it allows users
to access content on demand, making downloads easy and convenient

¢ Resume Downloads: Users can seamlessly continue downloads after temporary in-
terruptions. They simply have to reconnect to the server and request a stream that
starts where they left off

'For an overview of the problems that face the Net today, see Lecture I.

13-1

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

e Tolerate Packet Loss: TCP’s adaptive retransmission allows users to tolerate some
packet loss. If packets are missing, the server is transparently requested to retransmit
them

Because of these virtues, this scheme is almost universally used in practice today. How-
ever, the approach also has a number of major shortcomings. In fact, it invariably results
in:

e High Server Load: One major disadvantage of the scheme is that the server must
deliver and manage thousands of individual TCP streams simultaneously. If too many
users attempt to access the content, the server can be rapidly bogged down. An
example of this problem is the Victoria’s Secret Online Fashion Show, which was heavily
advertised at the 1999 Super Bowl. When more than a million subscribers attempted
to access the live webcast simultaneously, the central servers could not cope, swamping
the site and leaving nearly all viewers unable to view the webcast.

e High Network Load: The network, too, is overloaded since it has to handle thou-
sands of simultaneous streams

e Severe Scalabilty Issues: Conventional protocols, such as TCP, deal with packet-
loss by requesting the sender to retransmit the missing packets. While this approach
works for unicast networks, its multicast analog is known to be unscalable. Consider,
for example, a server distributing large files to thousands of clients. As clients lose
packets, their requests for retransmission can quickly overwhelm the server - a process
commonly referred to as feedback implosion. Adaptive retransmission, then, is clearly
problematic for the distribution of popular content: the approach is simply not scalable

13.2.2 Broadcast Solutions

An alternative solution that eliminates the need for retransmission and allows receivers to
access data asynchronously is the broadcast solution. In this approach, the server repeatedly
loops through the transmission of all data packets in the file. Receivers may join the stream
at any time, then listen until they receive all distinct packets for the file. This approach has
some obvious disadvantages, including:

e No Download On Demand: Users can not initiate downloads at their discretion,
rather they must wait and possibly receive unnecessary repititions until they finally
get the data they want.

e No Resumed Downloads: Users can not continue downloads seamlessly after tem-

porary interruptions. They have to wait for the receiver to cycle through the entire
file.

e Packet Loss: Packet loss is a major problem. Since there are no individual streams
or retransmissions, if you lose a packet you have to wait till the next cycle to get it.

13-2

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

Despite these shortcomings, the approach offers some advantages:

e Low Server Load: The server only handles a single stream, and continuously cycles
through it. It does not have to handle a stream per connection: there is no state per
user, nor are there any retransmissions. Thus server load is nominal.

e Low Network Load: There is low load on the network as well, since there is only
one copy of the stream.

e Scales Well: Since new users don’t add any overhead, and there are no retransmis-
sions, the approach is highly scalable.

13.3 Coding Solutions

Clearly, what is needed is a way to combine the advantages of both paradigms - while
mitigating their shortcomings. This can be accomplished by using techniques from coding
theory.

We all think of data as a series of ordered packets. A message is taken, broken into small
sequential chunks and transmitted over the network to the receiver, where it is re-assembled
and finally read. There are two fundamental sources of error in this process: packet loss,
and corruption.

In conventional protocols, each packet has a distinct header that identifies its position
within the original file. This header allows the receiver to reassemble the file in the correct
order, and to detect missing packets. Each packet is also equipped with a standard checksum
which allows the receiver to detect corrupted packets, which are then dropped and treated
as missing.

13.3.1 Dealing with Packet Loss: Forward-Error-Correction

As we have seen, traditional protocols such as TCP deal with packet-loss by requesting the
sender to retransmit the missing packets - an approach which can quickly become unscalable.
An alternative solution is to attempt to reconstruct the original data in the face of losses.

This is the idea behind mechanisms such as Forward-Error-Correction, which aim to
recover from corruption by adding redundancy to the original information. The idea is
simple: transmit the original source data, in the form of a sequence of packets, along with
additional, redundant packets. This redundant data can be used to recover lost source
information at the receivers.

For example, consider transferring a file through a network facing severe capacity con-
straints. In our troubled network, one out of every nine packets is dropped. A simple way
of addressing this is as follows:

1. Divide the file into blocks of eight packets each.

2. Append to each block a ninth packet that contains the XOR of the eight original
packets

13-3

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

HBBBNDBN - §

: Last packet
. is XOR of
. original packets

Figure 13.1. A Simple Parity-Check Code

The payload of the ninth packet is redundant, since it can be derived from the other eight.
Assume, now, that one of the packets is lost. If this happens to be the ninth packet, nothing
needs to be done - it was redundant anyway. If, however, it was one of the original packets it
can be reconstructed simply by taking the XOR of all received packets?. This simple XOR
‘code’ is called a parity-check-code. In general, the class of Eraser Codes allow recovery of
data given incomplete information: we can recover from errors without having to request
retransmissions.

Issues with FEC

Note that our simple scheme fails if more than one packet is dropped in a group of nine.
In general, more sophisticated FEC schemes add redundant packets to original ones in the
hope of recovering information in the face of losses: in doing so, they must strike a delicate
balance. On the one hand, adding too much redundancy wastes resources such as bandwidth
and CPU computation time. On the other, adding too little may make recovery in the face
of corruption impossible.

Finally, the encoding and decoding times for traditional FEC schemes quickly become
unmanagable for all but the smallest segments of data. This has severely limited the scope
of such schemes in the past.

13.3.2 A Digital Fountain

Using a recently developed class of codes known as Tornado Codes, it has become possible to
add redundancy to the original data in a manner such that the receiver can reconstruct the
original data after receiving a sufficient number of packets - regardless of order or sequence.

In other words, we can think of data as drops of water: you don’t care which drops you
get, and you don’t care if you lose some drops - as long as you get enough drops to fill your
cup®. Using such a coding scheme, as long as we receive a sufficient number of packets -
any packets - we can reconstruct the original file. One could even get these packets from

multiple sources, without having to worry about arranging coordination between them.

2Note that the XOR of a packet with itself is zero
3We can also view these encoded packets as random linear equations over the original content. Once we
have enough independent equations, we can solve for the original file.

13-4

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

This attractive scheme relies on two fundamental properties made possible by Tornado
Codes:

e We can take a file of n packets, and encode it into ¢n encoded packets.

e Given any set of n encoded packets, the original file can be recovered®. This means
that encoded packets are completely interchangable: it doesn’t matter which packets
the client receives, and in what order: once a sufficient number of packets have been
received the original content can be recovered. Thus, if some encoded packets are lost
in transit, any equal amount of encoded packets is just as useful for reconstructing the
original file.

Given these two properties, we can combine the advantages of the two traditional methods
of content delivery - while avoiding their limitations. Consider a system that sits in a loop,
continuously transmitting a stream of encoded packets. Clients come in and receive these
packets, and as soon as they have heard enough to recover the file, they disconnect.

Original File \ \

Packetized

Encoded Packets -
Transmit Each encoded packet Information in each
Across Network contains information original packet is spread
about a variable number across a number of
of original packets encoding packets

Receive Enough Pkts
Decode the Original]

Recover Original File \ |

Figure 13.2. Generation of the Encoded Packets

Unlike traditional broadcast solutions, this ensures that content is available on demand.
When a user requires data, he simply connects to the server, receives n packets, and discon-
nects. The server does not need to create a new connection for each individual user, it just
continues to serve the same stream.

Downloads can also be resumed seamlessly. If a user gets disconnected after receiving only
k < n packets, he can simply reconnect, get any n — k packets and complete his download.
Packet loss, too, is no longer a problem: if a packet is dropped, the next one can simply take
its place.

This scheme combines the low-load and scalability of the broadcast solution with the
reliability and flexibility of the point-to-point solution, and is thus very attractive.

“In reality there is some overhead to every coding scheme, we would actually require (1 + €)n

13-5

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

Issues with Codes

Encoding and decoding tend to be slow, time-consuming processes. While the file only needs
to be encoded once on the server, decoding is problematic, since each client must individually
decode the file on their home machines. There are two metrics generally used to measure
the efficiency of coding schemes:

e Time Overhead: The time to encode and decode, expressed as a multiple of the
encoding length.

¢ Reception Efficiency: The ratio of packets in the original message to the packets
needed to decode the message. The optimal is 1.

There is an engineering trade-off between these two metrics. Codes that exhibit optimal
reception efficiency - you only need to get exactly n packets to recover a file n packets long
- tend to be slow. A famous example are the standard Reed-Solomon codes - their running
time is quadriatic in the length of the message.

Tornado Codes

By slightly relaxing our demands on reception efficiency, we can decode the file far more
quickly. We buy this speed at a price - instead of needing only n packets to reconstruct the
original file, we now need (1 + €)n. Tornado codes exhibit exactly such properties: In order
to decode a file of 100K, the user has to download 105K - but he can decode the file very
rapidly. In fact, the time overhead for Tornado Codes is independent of the length of the
file:

e Reception Efficiency is 1/(1 + ¢)
e Time Overhead is In(1/e)

13.3.3 Digital Fountain: How It Works

Digital Fountain, Inc is currently putting just such a scheme into practice, providing the
ability to scale a single IP Multicast data stream to reach tens of thousands or even millions
of users, without massive server or cache farms or Internet infrastructure upgrades.

A traditional FEC scheme takes a file and appends a number of coding packets to it.
In contrast, the Fountain scheme can generate a potentially infinite number of such coding
packets for a single file. The original file can be reconstructed using any combination of a
sufficient number of these packets - and the process is fast and efficient. A server that is
hosting a file generates a continuous stream of such encoded packets. Users connect to the
server, hear a sufficient number of packets, and disconnect. There are no retransmissions
nor any need for coordination. Indeed, downloads can be performed in parallel if multiple
servers are available. The codes used are Tornado codes, and the coding technology that
generates the infinite stream of unique packets is called the Luby Transform.

Digital Fountain refers to each encoded packet as Meta-Content™. The file to be served
passes through an engine, which encodes it into a stream of Meta-Content™ packets. Note

13-6

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

a B FEE =
e EHEE B B

Encoding Engine -
[N uses the EEENN

000 o O o fo

Original Luby Transform Continuous Stream‘_ D:\:‘]
File of Encoded Packets | ' D:‘j]
¥ EF EMm [(TTT]
Clients wait until they receive Clients reconstruct

enough encoded packets. the original file

Any packets will do.

Figure 13.3. The Digital Fountain Scheme

that each packet is independently useful - ALL clients requesting the data can use it. It may
be useful to think of each packet as a random linear equation that contains some information
about the file. Each equation provides additional information, and one equation is as good
as another. Once a sufficient number of these equations have been collected, one can solve
for the original content.

Clients on a broadcast or multi-cast network can receive these packets directly. Unicast
clients, however, must use an independent UDP stream to get these packets. Note that there
is no need to use TCP, since packet-loss is now irrelevant - once enough packets are received,
the file will be complete®

13.4 Bloom Filters

We now move to a new topic. Imagine that you are connected to Napster, and wish to
download a song. For you to do so, you need to know which computers are currently sharing
it. This, in fact, is a very common network task: discovering which pieces of data reside at
a given node. The most common way of dealing with this is to exchange complete lists that
summarize each node’s holdings. Such lists can be extremely long and unwieldy, using up a
lot of network bandwidth and slowing down transfers.

An alternative way of answering such queries is to use a data structure called the Bloom
Filter. This provides small, approximate lists that can answer such queries with a low
probability of error.

More formally, we can express the problem as follows:

Given a set S = {xy, x5, ¥3...x, } on a universe U, we wish to answers queries of the form:
Is y € S7. For example, we may be considering a set of songs - say everything by the Beatles
- from the universe of all possible song titles. Such queries can be answered by using a Bloom
Filter in:

®Note that an independent stream still has to be generated for each Unicast client, except that it uses UDP
instead of TCP. Thus server load is reduced because there are no retransmissions or state, while network
load is reduced since UDP has less overhead. The use of broadcast or multicast with this technology, is
obviously more efficient.

13-7

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

e Constant time
e Small space

e But with some small probability, p of being wrong

13.4.1 The Data Structure

Given the set S = {x,zy, x3...x,} we create a bloom filter, B that represents the set as
follows: We begin with an m bit array, filled with Os:

[0[of0]

We hash each item z; in S, k times using different hash functions each time. We use the
result of each hash as an indez to the array, and set the bit at that index to one. Formally,
if the result of a hash H;(x;) = a, then we set Bla] = 1. After doing so for each item, using
each hash function, our array looks like this:

[0fofoftfof1fofoftfofofofofoftfofofofof1[o[0]

To check if y is in S, we hash y using each hash function, using the results to index into
the array as before. If, at each position we find a 1, we conclude that y is indeed in S.
Otherwise it definitely is not. Formally: y € S, if B[H;(y)] =1 for all i such that 0 < i < k

(0JofofzfofzJofofz]ofofofofofs]oJof0f0f7]0]0]

Note that each hash function can point to an entry containing 1, even though y is not
actually present in S. It is thus entirely possible to have false positives. False negatives,
however, are not possible: if y is in S, the query will always return true. Errors in a bloom-
filter, thus, are unidirectional. This lends to their use as queries: if a node has data that you
want, you will always access it. You only run the risk of checking and finding that it is not
there. Such false-positives, however, are not particularly troublesome: they can result from
cache changes and old lists anyway.

13.4.2 Optimal Bloom Filters

An ideal bloom filter is one that minimizes the probability of error. Given m bits for the
filter, and n elements in the set S, we wish to choose the number £ of hash functions to
minimize false positives®.

e Let p be the probability that a cell is empty. Since the hash is random, the probability
that a given hash function maps to a particular cell is evenly distributed, in other
words is 1/m. Thus the probability of a given hash function not hitting a particular
cell is (1—1/m). Since we have £ hash functions for each of n elements, the probability
that a cell is empty, p = (1 — 1/m)*? x e~Fn/m

6We assume that our hash functions look truly random.

13-8

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

e Let f be the probability of a false positive. This is the probability of the cell not being
empty for all k hashes. Thus f = (1 —p)* ~ (1 — e7Fn/m)k

Recall that a false positive can occur if each hash function maps y to a cell containing
1, even though y does not actually belong to the set. An optimal bloom filter is one that
minimizes the chance of this happening. Consider an element y that is not a member of the
set S. As the number of hash functions, k, increases we have a greater chance of running
into a 0 for at least one of them; this would tend to reduce the probability of false positives.
On the other hand, more hash functions simply mean more 1’s in the array’ - which tends
to increase the probability of error.

In fact, calculus tells us that the optimal bloom filter uses & = (In2)m/n hash functions.

13.4.3 Compressed Bloom Filters

Our original motivation was to exchange compact filters between network nodes, instead of
lengthy lists. Within this context, we know that a Bloom filter is not just a data structure: it
is also a message. Since transmitting any message consumes bandwidth, it may be worthwile
to compress it.

From one perspective, a Bloom filter looks just like a bit vector, and compressing such
vectors is easy. Arithmetic coding, for example, is a particularly well-suited technique for
compressing such strings. The more fundamental question is can Bloom filters be compressed
at all?

Optimization & Compression

We know that:
e The probability of a cell being empty, p = (1 — 1/m)k" ~ e~*n/m
e The probability of a false positive, f = (1 — p)¥ ~ (1 — e~ Fn/m)k

e The optimal number of hash functions, k¥ = (In2)m/n

But at this optimum & = (In2)m/n, and substituting back in, p = 1/2 - the probability
of a cell being empty is the same as of it being 1. This would seem to imply that the Bloom
filter is a true random string, which as we all know, cannot be compressed. This, however,
is a fallacy.

With compression, the optimal number of hash functions, k changes. The original trade-
off involved only three parameters:

e Size: m/n bits per item
e Number of hash functions: %

e False positive probability: f

"Recall how Bloom filters are set up. Each hash function contributes a ’1’ for each element in the set.

13-9

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

With compression, however, there are now four parameters to optimize over:
e Compressed (transmission) Size: z/n bits per item

e Decompressed (stored) Size: m/n bits per item

e Number of hash functions: &

e False positive probability: f

Transmission cost, which depends on the compressed size of the filter is what is impor-
tant. The storage size, which is what our previous optimum was based on, is no longer as
relevant. Machine memory is cheap and readily available: bandwidth is not. Our goal, thus,
is to reduce the false positive rate by increasing the decompressed size, while keeping the
transmission cost constant.

Optimal Compressed Filter

0.1
0.09
0.08
0.07
0.06
0.05
0.04+
0.03+
0.02+
0.01+ ‘

0 \ \ \ \ \ \ T T T |

False positiverate

Hash functions

Figure 13.4. False positive rate as a function of £ when z/n = 8

The graph above depicts the false positive rate as a function of the number of hash
functions used. The solid curve represents the tradeoff in the original, uncompressed bloom
filter, while the dotted line represents the tradeoff for a compressed filter. We see from
the graph that at k& = (In2)m/n, false positives are minimized for an uncompressed filter.
However, at this value of k, they are actually mazimized for a compressed one. The best
case without compression is the worst case with compression: compression always helps!

Note that using a compressed filter reduces the false positive rate while using fewer hash
functions. Since computing hash functions for each query takes up time, this may also
significantly improve performance.

13-10

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

Array bits per element | m/n 8 12.6 46
Trans. bits per element | z/n 8 7.582 | 6.891
Hash functions k 6 2 1
False positive rate f 0.0216 | 0.0216 | 0.0215

Table 13.1. Improvement with Compressed Filter given a Fixed Probability Rate

We can see from the table that a compressed filter can reduce transmission size from
8 bits/element to 7.5 bits/element, at the cost of increasing the uncompressed size to 12.6
bits/element. In doing so, we also manage to reduce the number of has functions needed
from 6 to 2 - while keeping the false positive probability completely unchanged.

Array bits per element | m/n 8 14 92
Trans. bits per element | z/n 8 7.923 | 7.923
Hash functions k 6 2 1
False positive rate f 0.0216 | 0.00177 | 0.0108

Table 13.2. Improvement with Compressed Filter given a Bounded Transmission Size

In this table, we can see how increasing the uncompressed size while keeping the transmis-
sion size bounded improves the false positive rate. For example, increasing the uncompressed
size from 8 to 14 (while the compressed size remained constant at 8) reduced the error rate
considerably - while cutting the number of hash functions used by a third.

The moral of our story, then, is clear: bloom filters should be compressed whenever
possible.

13.5 Bringing It All Together: Informed Content De-
livery

Imagine nodes in a network downloading the same file from a source. Assuming that a pair
of nodes have not received ezxactly the same content, they should be able to benefit from
this fact. Each can do better by sharing his data with his neighbour and combining the two
data-sets intelligently. This simple idea is called Informed Content Delivery.

The essential idea is that on a multicast, or overlay Peer-to-Peer network, there are often
untapped communication paths available for data to traverse. Nodes can use these additional
paths to share data amongst each other and benefit from the exchange. For example, my
neighbour and I may be missing different parts of a file if packet losses are independent. By
sharing or reconciling information with each other, we can each reconstruct the complete
file.

Reliable multicast uses tree-based networks. The diagram depicts such a logical tree, the
links involved, and the additional paths that can be exploited.

13-11

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

Figure 13.5. Taking Advantage of Extra Communication Paths

Though the idea behind Informed Content Delivery is simple, exchanging information
between additional links consumes bandwidth. As such, the idea will be more applicable in
the future, when bandwidth will be cheap and the goal will be to receive data as quickly as
possible.

13.5.1 Challenges For Informed Content Delivery

The Internet is a highly mutable environment. Connections are continuously being made
and broken, and their speeds and loss rates vary widely. Sessions are preemptable, and at
any given moment routers, hosts and links can come up or go down. Couple this with an
enormous client population, and the challenges faced by Informed Content Delivery seem
almost intractable.

To complicate matters, adaptive overlays that build on top of the Internet work by
reconfiguring network topologies and can actually exacerbate these problems. In the face
of all this, what is to become of our idea that two neighbours with disparate data-sets can
benefit each other? Any scheme that purports to do so must be able to cope with frequent
reconfiguration, provide preemption support, and be scalable.

13.5.2 The Digital Fountain Solution

The Digital Fountain provides just such a scheme. It is:

Stateless: Servers can produce encoded packets continuously.

Time-Invariant: FEncoding is memoryless - one packet is as good as another

Tolerant: The scheme can tolerate different client speeds and network characteristics
- all that matters is water in your cup.

Additive: Fountains can be accessed in parallel - data from one is as good as data
from another.

Using the Digital Fountain scheme, the fluidity that was a problem for Content Delivery
can become an asset. The ever-changing environment of the Internet results in different

13-12

MIT 18.996 Lecture 13 — May 1, 2002 Spring 2002

working-sets of data, even amongst peers receiving identical content. The receiver with
the higher rate, or the one that started earlier will have more content. Similarly, receivers
suffering from uncorrelated packet losses, will have gaps in different portions of their working
sets.

This means that there is an opportunity for peers to exchange fountain packets: the ones
they have not received can be put to use. This however, presents a challenge. Reconcilia-
tion using traditional, ordered sequential packets is relatively simple. You connect to your
neighbour and ask him for packets that you are missing. In the fountain scheme, each node
has a set of packets from a potentially infinite pool of unique packets. Discovering which
ones your neighbour has that are of actual use to you is quite a knotty problem.

The Alexandrian solution is to use our old friend, the Bloom Filter. We can coordinate
between peers by exchanging a (compressed) Bloom filter that represents a list of all encoding
packets that a node has. The neighbouring node receives the filter, and can start sending
all the packets its peer did not possess. The occasional false positive is not harmful, since
coding already contains redundancy. Besides, you want useful packets as soon as possible,
and an occasional extraneous one does no harm.

As we have discussed, Bloom filters require only a small number of packets, thus nodes
can be kept appraised of their neighbours holdings at minimum cost. If it is known that the
number of discrepencies between two nodes is limited, then enhanced data structures called
Approximate Reconciliation Trees can be used. These structures are also based on Bloom
Filters®.

There are many other potential applications that can exploit the unique features of the
Digital Fountain approach to data delivery. The Informed Content Delivery described above
is only one of them, and the area is an active field of research.

8These reconciliation techniques can also have other practical uses in applications such as databases, or
for synchronizing handhelds. In deciding between the approximate reconciliation provided by Bloom Filters,
and the exact reconciliation provided by lists, the main criterion remains communication complexity and the
cost of bandwidth.

13-13

Bibliography

[1] Digital Fountain White Paper: “Digital Fountain’s Meta-Content Technology - A Quan-
tum Leap in Content Delivery” 2001, Fremont, CA.

(2] Byers, J; Luby, M; Mitzenmzher, M; & Rege. A. “A Digital Fountain Approach to
Reliable Distribution of Bulk Data.”, SIGCOMM pgs 56-67, 1998.

(3] Mitzenmacher, Michael. Presentation: “Codes, Bloom Filters, and Overlay Networks.”
2002, Cambridge, MA.

14

