MIT 18.996: Topic in TCS: Internet Research Problems

Lecture 6 — March 13, 2002
Lecturer: Bobby Kleinberg (rdk@math.mit.edu)

Spring 2002

Scribe: Lauren McCann

6.1 The Model

Let us consider a set of items (e.g. cached web objects), a set of caches (e.g. servers), and a
set of different views (e.g. clients on different parts of the network).

Let I = {items} with |I| = N.
Let C' = {caches} with |C| = M.

Let V = views with |V| = V.
Vi C C with [V >

Note: N should be quite large, and we will often prove things just for N large.

Recall that most protocols for locating objects have these properties:

e locality
e scalability

e load balancing

A ranged hash function (RHF) is a map that takes a view and an item and hashes it
to a cache in which you can find that item. h:2¢ x I — C s.t. h(V,i) € V

A ranged hash family is a finite set of ranged hash functions.

A random ranged hash function is a uniform sample from such a set.

Properties of a “good” random RHF in a distributed cache environment:

1. Load Balancing (average over all views)

2. Locality (in our model distance isn’t a variable in the function so we cross this out)

3. Smoothness (the function shouldn’t change very much when the inputs don’t change

much)
4. Redundancy/Spread

5. Efficient Computation

MIT 18.996 Lecture 6 — March 13, 2002 Spring 2002

6. Efficient Representation

7. Invertible (not necessarily desired)

6.1.1 Load Balance
A(b) = number of {i € I|h(V,i) = b for some v € V'}

Here we use the variable b because we are viewing them as buckets. This is the number of
items that will be hashed to to a certain bucket.

6.1.2 Balance

Balance is distinct from load balancing. We would like each view as balanced as possible

such that an adversary from one view cannot easily overload a cache.
With high probability V V', h(V, —) assigns O(ﬁ) fraction to b.
V V with high probability the number of {iI|h(V,i) = b} =
0ifbg¢V
O1/|V])itbeV

6.1.3 Smoothness

Smoothness is determined by how much a hash function changes when the view changes.
A(V1,V,) = number of items that hash to different cache values.

A(V1,V,) = number of {i € Z|h(V1,i) # h(Va, i)}

6.1.4 Spread

o (i) = number of {h(V,i)|v € V'}
This represents the max number of caches it gets matched to.

6.2 A simple random RHF

We are now asked to come up with a simple random RHF. One suggestion often is: V(V1)
pick b € V at random.

Does this work?

NO! This one has bad spread properties.

How about another obvious choice, choosing mod the number of caches in a view. This
one does great on balance, but is not very smooth. Let’s look at a simple example of bad
spread.

6-2

MIT 18.996 Lecture 6 — March 13, 2002 Spring 2002

123456789
abcabcabec
ababababa
XXXXX

In this case there is an expected 2/3 change, and it gets even worse for larger numbers.
Let us try another example.
Pick V ¢ a permutation, m; : C — C uniformly and independently at random.

12345

152413
231542
315324
442135

Given (Vi) hash it to b € V minimizing 7; ' (b)

This equates to choosing the first one on the list (from the left) that is a member of the set
V.

Suppose V = {2,4,5}

Then we would choose 5, 5, 5, 4.

Note: The example given in class was not provided with a random number generator
and does not have enough of a sample size to demonstrate the actual good properties of this
random RHF'. Thus having three 5’s and a 4 is not something we should expect.

Lemma: With probability > 1 —¢, o(i) < o = tIn(¥)

Proof: The hash function obviously has a bias to the left side of the row. We want to prove
that every view, V| intersects 1 of the first ¢ columns in the tableau with high probability.

Prim ' (V)Nel =01 = (") /(7))

__ m—0o m—o—1 m—o—V+41
T m m—1 7" m-V+1

<(mE) < (1-2)% <eF

m

Prir; (V) Oo] = 0] < Ve o/t <e

)

Lemma: With probability > 1 — €, A(b) <A = (1 + /1)L n(2AY)

€

Views have size < %' such that each bucket would get a load of =N = % This tells us

t
the factor that it exceeds the perfect is logarithmic and a O(1) term.

Proof: Put ¢/ = tIn(2%Y)
With probability < § some view is disjoint from 7;[¢0’] for some 2
For any bucket b and item i Pr[b is in first o’ columns of row] = £

. . !
E[number of rows for which this occurs] = 2% = &y 200

We apply the Chernoff bound to obtain the “Witthigh perobability” statement 0]

6-3

MIT 18.996 Lecture 6 — March 13, 2002 Spring 2002

Note: Chernoff bounds show that the sum cannot be too much greater than the expec-
tation.

Themes: Compared to a non-ranged hash function the spread and load is only logarith-
mically worse.

Remark: (Smoothness bound) With high probability 6(V1, Va) = O(““/}1%“2")

6.3 A better RHF

Vi € T pick a point r; € {|Z| = 1} uniformaly and independently at random.

Vb € C pick a set of klogm points uniformly and independently at random.

Given an item (Vi) map it to the first bucket b € V' that you encounter going clockwise
starting from r;

We need N + K'mlogm points of the unit circle where K is a constant.

6.4 Applications

Random Trees and Consistent Hashing - Karger, L, L, L, L, P

I € {items}, C = {caches}

Vi € I3 an origin server s(7)

Browser: For i € Z, take a balanced d-nary tree with |V| nodes. Map each node of the
tree to a cache using a fixed consistent hash function. By fixed we mean that every browser
uses the same consistent hash tree.

When requesting object ¢, pick a randomleaf of this tree.

Identify the path to the root and present the request to the cache at that leaf, indicating
the entire path.

Cache: Keep a counter Vi € Z, incremented on each request for ¢. If 7 is in cache, serve
it. Else forward to successor and cache the object when counter hits q (an optimizable
parameter).

Origin server serves the object.

6.5 CHORD

Peer-to-peer: each node only knows a logarithmic factor of the cache. Follow the pointer
which gets us closest to the point. Ask there for the key or a way to get closer to the key.
You wait until someone has a direct link.

The number of hops is algorithmic with the number of caches.

6.6 The min-spread assignment problem

Suppose we have n items and m caches.
Items have loads (p1, ..., i4n) and caches have capacities (p1, ..., Pm)-
Goal: To find the assignment with the fewest number of edges possible.

6-4

MIT 18.996 Lecture 6 — March 13, 2002 Spring 2002

A fractional assignment is a matrix, A = (a;;) satisfying:
1. a;; >0

ii. Z]- Qi3 = [y

i > aij < pj

#{(i.5)|a:; >0}

spread = N

We want to minimize spread.

Fact: The min-spread assignment problem is NP-hard.

Proof: Consider the case of 2 servers, p; = po = 1 and Zfil Wi = 2.
We partition loads into two subsets with equal sums. This is the partition problem.
O

Fact: There is a deterministic 2-approximation to the min-spread assignment problem.

Proof: : Suppose we order the p; largest to smallest (p1 > pa > ... > pn).

Then we put the p; on top of them. py should end up over some p. Let us say it is the

The number of arcs = the number of sub-intervals. We count one for the end of all of
the N p's and the k p's.

So spread = %zl—i—%

Now compare to the optimal algorithm. OPT uses at least N edges. k = minimum of k
edges. OPT achieves > MAX [N, k]

N+ k <2MAX|N, k]

Open Question: Can you get a 1 + € approximation for any € < 1 or Ve < 17

6.7 The min-spread round robin assignment problem

An assignment is round robin if it satisfies i-iii and:
iv. Within each row A, the non-zero entries are equal.

Problem: Assume # items >> # caches, and given a problem instance determine if there
exists a round robin assignment.

If you split it up into 3 equal pieces they have to go to different servers. We are not
looking at just rational divisions, they must be é.

Problem: Assume there exists a round robin assignment; can you get a constant factor
approximation to the min-spread assignment?

A randomized algorithm for min-spread round robin assignment.

Assume p1 = pos = ... = pp

MIT 18.996 Lecture 6 — March 13, 2002 Spring 2002

H1 < pg < ... < fin

p=3

Assume p,, (1 +€1)p

Step 0: Pick a random permutation for all i. Initialize assignment. a;; = £

Step (1 <i < N): Redistribute the load yu; evenly among the first d servers in 7; choosing
the smalled d such that the load on each server is still < p.

Theorem 6.1. The algorithm terminates with a round robin assignment of spread 1 + €
with probability > 1 — €3 provided N is large enough. N = Q(e; %e; " In(L)m?)

1

€3
Proof: Compare with a “reference algorithm” which on step ¢ redistributes all load to
7T1(1). O

Show our algorithm matches the “reference algorithm” on steps 1,2, ..., Ny, where Ny =

[(1-2)N].
Let X;; be the load on server j in reference algorithm step 1.
SV {X;} is a martingale.
A martingale has E[X,| Xy, X1, ..., Xs<r] = X
Use Azuma’s inequality. No server is overloaded until late in the game.

6.8 Open Questions
1. Improve lower bound on N in Theorem.
2. Deal with differing capacities, p ’s
3. Deal with non-complete bipartite graphs.
4. Multi-dimensional loads and capacities.

5. Find other instances of algorithms whose outcome is nearly independent of input.

