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18.997 Topics in Combinatorial Optimization February 5, 2004 

Lecture 2 
Lecturer: Michel X. Goemans Scribe: Robert Kleinberg 

In this lecture, we will: 

•	 Present Edmonds’ algorithm for computing a maximum matching in a (not necessarily bipar-
tite) graph G. 

•	 Use the analysis of the algorithm to derive the Edmonds-Gallai Decomposition Theorem stated 
in the last lecture. 

Recapitulation 

Recall the following essential definitions and facts from the last lecture. A matching in an undirected 
graph G is a set of edges, no two of which share a common endpoint. Given a graph G and a matching 
M , a  vertex  is  matched if it is the endpoint of an edge in M , unmatched otherwise; we will often 
designate the set of unmatched vertices by X . Given  a  graph  G with matching M , an  M-alternating 
path is a path whose edges are alternately in M and not in M . (Here  we  use  path to mean a 
simple path, i.e. one with no repeated vertices. We’ll refer to a non-simple path as a walk.) If 
both endpoints of an M -alternating path belong to the set X of unmatched vertices, it is called an 
M -augmenting path. Recall the following theorem from last time. 

Theorem 1 A matching  M is of maximum size if and only if G contains no M -augmenting path. 

Figure 1: An M -augmenting path 

Flowers, Stems, and  Blossoms  

The following construction is useful for finding M -augmenting paths. Given a graph G = (V, E) with  
matching M ; construct a directed graph Ĝ = (V, A) with the same vertex set as G, and  with  edge  set  
determined by the rule that (u, w) ∈ A if and only if there exists v with (u, v) ∈ E \ M, (v, w) ∈ M . 

ˆObserve that every M -augmenting path in G corresponds to a path in G which begins at a vertex in 
X and ends at a neighbor of X . However, the converse is not true, because an M -alternating walk 
may begin at a vertex in X and end at a neighbor of X , without being an M -augmenting path, if it 
contains an odd cycle. Figure 2 illustrates an example of such a walk. This motivates the following 
definition. 

Definition 1 An M -flower is an M -alternating walk v0, v1, v2, . . . , vt (numbered so that  (v2k−1, v2k) ∈ 
M, (v2k, v2k+1) �∈ M) satisfying: 

1. v0 ∈ X. 

2-1 



X 

Stem Blossom 

Figure 2: An M -flower 

2. v0, v1, v2, . . . , vt−1 are distinct. 

3. t is odd. 

4. vt = vi, i even. 

The portion of the flower from v0 to vi is called the stem, while the portion from vi to vt is called 
the blossom. 

Lemma 2 Let M be a matching in G, and  let  P = (v0, v1, . . . , vt) be a shortest alternating walk 
from X to X. Then either P is an M -augmenting path, or v0, v1, . . . , vj is an M -flower for some 
j <  t. 

Proof: If v0, v1, . . . , vt are all distinct, P is an M -augmenting path. Otherwise, assume vi = 
vj , i  <  j, and  let  j be as small as possible, so that v0, v1, . . . , vj−1 are all distinct. We shall prove 
that v0, v1, . . . , vj is an M -flower. Properties 1 and 2 of a flower are automatic, by construction. It 
cannot be the case that j is even, since then (vj−1, vj) ∈ M , which gives a contradiction in both of 
the following cases. 

•	 i = 0:  (vj−1, vj) ∈ M contradicts v0 ∈ X . 

•	 0 < i <  j  − 1: (vj−1, vj) ∈ M contradicts the fact that M is a matching, since vi is already 
matched to a vertex other than vj−1. 

This proves that j is odd. It remains to show that i is even. Assume, by contradiction, that i is 
odd. Then vj+1 = vi+1 (since both are equal to the other endpoint of the matching edge containing 
vj = vi), and we may delete the cycle from P to obtain a shorter alternating walk from X to X . 
(See Figure 3.) � 

Given a flower F = (v0, v1, . . . , vt) with blossom B, observe that for any vertex vj ∈ B it is 
possible to modify M to a matching M ′ satisfying: 

1. Every vertex of F belongs to an edge of M ′ except vj . 

2.	 M ′ agrees with M outside of F , i.e. M � M ′ ⊆ F . 

3.	 |M ′| = |M |. 
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Figure 3: An alternating walk from X to X which can be shortened. 

To do so, we take M ′ to consist of all the edges of the stem which do not belong to M , together 
with a matching in the blossom which covers every vertex except vj . 

Whenever a graph G with matching M contains a blossom B, we may simplify the graph by 
shrinking B, a process which we now define. 

Definition 2 (Shrinking a blossom) Given a graph G = (V, E) with a matching M and a blos­
som B, the  shrunk graph G/B with matching M/B is defined as follows: 

• V (G/B) = (V \ B) ∪ {b} 

• E(G/B) =  E \ E[B] 

• M/B = M \ E[B] 

where E[B] denotes the set of edges within B, and  b is a new vertex disjoint from V . 

Observe that M/B is a matching in G, because the definition of a blossom precludes the possibility 
that M contains more than one edge with one but not both endpoints in B. Observe also that G/B 
may contain parallel edges between vertices, if G contains a vertex which is joined to B by more 
than one edge. 

The relation between matchings in G and matchings in G/B is summarized by the following 
theorem. 

Theorem 3 M is a maximum size matching in G if and only if M/B is a maximum size matching 
in G/B. 

Proof: (=⇒) Suppose N is a matching in G/B larger than M/B. Pulling N back to a set of edges 
in G, it is  incident to at most one  vertex  of  B.  Expand  this  to a matching in  N + in G by adjoining 

2 (|B| − 1) edges to match every other vertex in B. Then  |N +| exceeds |M | by the same amount 
that |N | exceeds |M/B|. 

(⇐=) If M is not of maximum size, then change it to another matching M ′, of equal cardinality, 
in which B is an entire flower. (If S is the stem of the flower whose blossom is B, then we may  take  
M ′ = M �S.) Note that M ′/B is of the same cardinality as M/B, and  b is an unmatched vertex of 
M ′/B. Since  M ′ is not a maximum size matching in G, there  exists  an  M ′-augmenting path P . At  
least one of the endpoints of P is not in B. So number the vertices of P u0, u1, . . . , ut with u0 �∈ B, 
and let ui be the first node on P which is in B. (If there is no such node, then ui = ut.) This 
sub-path u0, u1, . . .  , ui is an (M ′/B)-augmenting path in G/B. � 
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M := ∅

X := {unmatched vertices}

Form the directed graph ˆ
G. 
while Ĝ contains a directed path P̂ from X to N (X)


Find such a path P̂ of minimum length.

P := the alternating path in G corresponding to P̂ 

if P is an M -augmenting path,


modify M by augmenting along P . 
else 

P contains a blossom B.

Recursively find a maximum size matching M ′ in G/B.

if |M ′| = |M/B| /* M is already a max matching. */


return M /* Done! */ 
else /* M can be enlarged */ 

Unshrink M ′ as in the proof of Theorem 3, 
to obtain a matching in G of size > |M |. 

end 

Figure 4: Algorithm for computing a maximum matching 

3 A polynomial-time maximum matching algorithm 

The algorithm for computing a maximum matching is specified in Figure 4. 
The correctness of the algorithm is established by Lemma 2 and Theorem 3. The running time 

may be analyzed as follows. We can compute X and Ĝ in linear time, we can find P̂ in linear time 
(by breadth-first search), and we can shrink a blossom in linear time. We can only perform O(n) 
such shrinkings before terminating or increasing |M |. The number of times we increase |M | is O(n). 
Therefore the algorithm’s running time is O(mn2). With a little more work, this can be improved 
to O(n3). (See Schrijver’s book.) The fastest known algorithm, due to Micali and Vazirani, runs in √
time O( n m). 

4 Combinatorial consequences of the algorithm 

Our aim now is to use the analysis of the algorithm to derive the following two combinatorial 
theorems, both of which were asserted in the last lecture. 

Theorem 4 (Tutte-Berge Formula) For a graph G and a set of vertices U ⊆ V (G), let  co(G\U ) 
denote the number of odd components of the graph G \ U , i.e. the number of components with an 
odd number of vertices. Then the cardinality of a maximum size matching, ν(G), satisfies:  

1 
ν(G) =  min  [|V | + |U | − co(G \ U )] . (1) 

U⊆V 2 

Theorem 5 (Edmonds-Gallai Decomposition) Given a graph G, let  

D(G) :=  {v : ∃ a maximum size matching missing v}


A(G) :=  N (D(G))

C(G) :=  V (G) \ (D(G) ∪ A(G))
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A(G) 

D(G) 

C(G) 

Figure 5: Edmonds-Gallai Decomposition 

Then U = A(G) achieves the minimum on the right side of the Tutte-Berge formula, D(G) is the 
union of the odd components of G\A(G), and  C(G) is the union of the even components of G\A(G). 
Moreover, every odd component of G \ A(G) is factor-critical. (A graph H is factor-critical if for 
every vertex v, there is a matching in H whose only unmatched vertex is v.) 

To prove these theorems, consider a maximum size matching M in G, take an unmatched vertex 
x ∈ X , and consider all the vertices which can be reached by an alternating path from x. The first 
edge on such a path must lie outside of M , the second edge must lie in M , and so on, leading to a 
picture as in Figure 6. 

Even 

Odd 

Even 

Odd 

Even 
x 

Figure 6: Vertices reachable by alternating paths from x. 

Motivated by this picture, we make the define the following three subsets of V (G): 

Even := {v : ∃ an alternating path of even length from X to v} 

Odd := {v : ∃ an alternating path from X to v} \ Even 

Free := {v : � ∃ an alternating path from X to v} 
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We will sometimes refer to a vertex as being even, odd, or free, according to which of these sets it 
belongs to. 

Claim 6 If there is an edge from Even to v, then there is an alternating walk of odd length from X 
to v, and there is an alternating path from X to v. 

Proof: If e = (u, v) is an edge between Even and v, and  P is an alternating path of even length 
from X to u, then an alternating walk of odd length from X to v is constructed as follows. If e ∈ M , 
then we take P and delete the final edge, which is necessarily e. If  e �∈ M , then we append e to P . 
If this alternating walk is not a path, it can only be because v lies on P , in  which case  P contains a 
sub-path which is an alternating path from X to v. � 

Corollary 7 In G there is no edge between Even and Free. 

Define the shrunk graph G0 to be the graph obtained at the innermost level of the recursion 
in the matching algorithm given above, on the final iteration of the while loop. Let M0 be the 
maximum size matching in G0 computed by the algorithm. Since G0 has no flowers, and M0 is a 
maximum matching, it follows that G0 has no alternating walk from X to X . 

Claim 8 In G0, there is no edge between two vertices in Even. 

Proof: If such an edge e = (u, v) exists, then by Claim 6, G0 contains an alternating walk P 
of odd length from X to v. But  v is even, so there is also an alternating path P ′ of even length 
from X to v. Concatenating P with the reverse of P ′, we obtain an alternating walk from X to X , 
contradicting the definition of G0. � 

It is worth noting that Claim 8 doesn’t necessarily hold in G. This is because all the vertices 
of a blossom are even. (The stem is an even-length alternating path from X to one vertex v of the 
blossom, and all other vertices of the blossom are reachable from v by an even-length alternating 
path which goes around the blossom either clockwise or counter-clockwise.) 

Claim 9 Even = D(G) =  {v : ∃ a maximum-size matching missing v}. 

Proof: Certainly if v is even then there a maximum-size matching M ′ missing v. Such a matching 
is obtained by taking an even-length alternating path P from X to v and putting M ′ = M � P . 
Conversely, if there exists a maximum-size matching M ′ missing v, then  M � M ′ is a union of 
even-length cycles and paths, and v is an endpoint of one of these paths, because it does not belong 
to an edge of M ′. The other endpoint of this path P does not belong to an edge of M , i.e. it is an 
element of X . This confirms that P is an even-length alternating path from X to v. � 

Claim 10 Odd = A(G) =  N(D(G)). 

Proof: If v is odd, then there is an alternating path of odd length from X to v. The  vertex  
preceding v on this path must be even, which confirms that Odd ⊆ N(Even) =  N(D(G)). The 
reverse inclusion follows from Claim 6, which ensures that every vertex adjacent to Even belongs to 
Even ∪ Odd. � 

Claim 11 Free = C(G) =  V (G) \ (D(G) ∪ A(G)). 

Proof: Immediate from the definition of Free, and from the preceding two claims which identify 
Even, Odd with D(G), A(G), respectively. � 

Claim 12 In G0, every free vertex is matched to another free vertex by M , and every odd vertex is 
matched to an even vertex by M . 
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Proof: Every vertex which is free or odd is incident to an edge of M , because no such vertex 
may belong to X . If  e = (u, v) is  an  edge  of  M with u odd, and if P is an odd-length alternating 
path from x ∈ X to u, then  P ∪ {e} is an even-length alternating path from X to v. (It  is  not  
possible that v ∈ P because v �∈ X and every vertex in P \ {x} is already matched to a vertex of P 
other than u.) This proves that every odd vertex is matched to  an  even vertex.  That  means a  free  
vertex may not be matched to an odd vertex, but it also may not be matched to an even vertex (by 
Corollary 7), so every free vertex is matched to another free vertex. � 

Claim 13 Every component of G \ A(G) is a subset of either D(G) or C(G). The even-cardinality 
components are subsets of C(G), while the odd-cardinality components are subsets of D(G). More-
over, if M is a maximum-size matching in G, then every component H of D(G) satisfies one of the 
following: 

• |X ∩ H | = 1, and  M ∩ δ(H) =  ∅. (The  coboundary of a vertex set U , denoted by δ(U), is  the  
set of edges with exactly one endpoint in U .) 

•	 X ∩ H = ∅, M ∩ δ(H) contains exactly one edge, and this edge joins H to A(G). 

Proof: The proof is by induction on the number of blossoms which are shrunk during the execution 
of the maximum matching algorithm. If no blossoms are shrunk, then G = G0, and the claim is a 
consequence of the following observations: 

1. If u is an even vertex of G0, then every neighbor of u is in Odd = A(G0). (By Corollary 7 and 
Claim 8.) 

2. Therefore every vertex u in Even = D(G0) is an isolated vertex of G0 \ A(G0). Moreover, u 
either belongs to X , or  is joined to  A(G0) by an edge  of  M . 

3. For every component H of Free = C(G0), the edge set M ∩ E[H ] is a perfect matching in H . 
(By Claim 12.) 

Now for the induction step, suppose B is a blossom in G and that the claim holds for G/B. Then  
B corresponds to a vertex b ∈ G/B which is an even vertex in some component Hb of D(G/B). 
(The stem of the flower containing B corresponds to an even-length alternating path from X to b 
in G/B.) When we inflate b to B, we claim that: 

1. Except for b, all even vertices of G/B remain even. All vertices of B are also even in G. 

2. All odd vertices of G/B remain odd. 

3. All free vertices of G/B remain free. 

If these are true, then we’ll be done, because this says that inflating b to B doesn’t change the set 
A(G), and it doesn’t change the components of G \ A(G) except that a vertex of Hb inflates into 
an odd cycle. Note that this doesn’t change the parity of |V (Hb)|. Also, inflating b to B doesn’t 
change the number of unmatched vertices in Hb, nor does it change the number of matching edges 
in δ(H). 

∗It remains to prove (1)-(3). For (1), let b ∈ B denote the vertex where the stem joins the 
blossom. If P = (v0, v1, . . . , vt) is an even-length path in G/B with v0 ∈ X and vt �= b, then one of 
the following cases applies. 

•	 P avoids b. In  this  case,  P is also a path in G, and there is nothing to prove. 
∗•	 b = vs, s even. In this case, the sub-path (v0, . . . , vs) lifts to a path P0 = (v0, . . . , vs−1, b ) 

in G ending with the last edge of the stem. The next edge (vs, vs+1) corresponds to an edge 
(w, vs+1) in  G, with  w ∈ B. Let  P1 be an even-length alternating path in B from b∗ to w. We  
can splice together P0, P1, and the path P2 = (w, vs+1 , vs+2, . . . , vt) to obtain an even-length 
alternating path in G from v0 to vt. 
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∗ •	 b = vs, s odd. In this case, the sub-path (vs, . . . , vt) lifts to a path P2 = (b , vs+1, vs+2, . . . , vt) 
in G beginning with the last edge of the stem. The desired even-length path in G from v0 to 
vt is constructed by a splicing process as before, but this time in reverse. 

Finally, every vertex w in B is an even vertex of G, because we may obtain an even-length alternating 
∗path from X to w by taking the stem and appending an even-length path in B from b to w. 

∗To prove (2) and (3), let A (G) denote the set of vertices in G which are odd vertices of G/B. 
∗(We wish to eventually prove that A (G) =  A(G), but for now we will not assume it.) From the 

∗induction hypothesis, we have the following characterization of components of G \A (G): each such 
component H satisfies 

1. |V (H)| is even. X ∩ H = ∅, and  M ∩ δ(H) =  ∅. 
2. |V (H)| is odd. |X ∩ H | = 1,  and  M ∩ δ(H) =  ∅, or  

∗3. |V (H)| is odd. X ∩ H = ∅, and  M ∩ δH consists of a single edge joining H to A (G). 

Components of the first two types will be called inaccessible. Components of the third type will 
be called accessible, and the edge M ∩ δ(H) will be called the gateway to such a component. The 
terminology is justified by the following characterization of alternating paths in G which begin at a 
vertex x ∈ X : such a path P does not visit any inaccessible component except for the one containing 
x, and  if  P visits an accessible component H , then it reaches H by traversing the gateway edge. The 

∗proof is by contradiction: if not, let H0 be the first component of G \A (G) not containing x which 
∗is reached by traversing an edge e = (v, w) �∈ M . We  must  have  u ∈ A (G) since there are no edges 

∗between distinct components of G \ A (G). The edge preceding e in P is an edge e′ = (u, v) ∈ M . 
∗	 ∗Since u ∈ A (G), e′ is a gateway edge and v belongs to some other component H1 of G \ A (G). P 

could not have reached H1 by traversing e (since it is a simple path, and it exits H1 by traversing 
e′), so it must have reached H1 via a non-gateway edge, contradicting the fact that H0 was the first 
such component. 

This characterization of alternating paths in G immediately proves (3), since components of 
∗G \A (G) corresponding to free vertices of G/B satisfy (3) and are inaccessible. To see that it also 

∗proves (2), consider any v ∈ A (G). In G/B there is an alternating path of odd length from X to v; 
this is also an alternating path in G, so all that remains is to show that G contains no alternating 
path of even length from X to v. Let  e = (u, v) be the edge of M containing v. If  P is an alternating 
path of even length from X to v, then  e must be the last edge of P . But  u belongs to an accessible 
component H , and  e is its gateway edge. But this means the only way for P to reach H is to traverse 
e (because P starts in X , and  X ∩ H = ∅), and this contradicts the fact that P is a simple path. 

1Claim 14 |M | = [|V | + |A(G)| − co(G \ A(G))] .2 

Proof: Every vertex in V \ X belongs to one and only one edge in M , so  

1 |M | =
2

(|V | − |X |) .	 (2) 

Now, Claim 13, establishes that each odd component H of G \ A(G) satisfies one of the following 
two criteria: 

• |X ∩ H | = 1, M  ∩ δ(H) =  ∅. 
•	 X∩H = ∅, and  M ∩δ(H) consists of a single edge joining H to A(G). (Moreover, every vertex 

in A(G) is an endpoint of exactly one such edge.) 
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Hence, 
co(G) =  |X |+ |A(G)|. (3) 

Combining (2) and (3) we obtain the desired formula. � 
This claim establishes that 

1 
ν(G) ≥ min [|V | + |U | − co(G \ U )] . 

U⊆V 2 

The reverse inequality is trivial, so we have proved the Tutte-Berge formula. Note that we have also 
established all of the claims in the Edmonds-Gallai Decomposition Theorem, except for the assertion 
that every component of D(G) is factor-critical. This part of the theorem will be addressed in the 
next lecture. 
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