
1

2

18.997 Topics in Combinatorial Optimization February 5, 2004

Lecture 2
Lecturer: Michel X. Goemans Scribe: Robert Kleinberg

In this lecture, we will:

•	 Present Edmonds’ algorithm for computing a maximum matching in a (not necessarily bipar-
tite) graph G.

•	 Use the analysis of the algorithm to derive the Edmonds-Gallai Decomposition Theorem stated
in the last lecture.

Recapitulation

Recall the following essential definitions and facts from the last lecture. A matching in an undirected
graph G is a set of edges, no two of which share a common endpoint. Given a graph G and a matching
M , a vertex is matched if it is the endpoint of an edge in M , unmatched otherwise; we will often
designate the set of unmatched vertices by X . Given a graph G with matching M , an M-alternating
path is a path whose edges are alternately in M and not in M . (Here we use path to mean a
simple path, i.e. one with no repeated vertices. We’ll refer to a non-simple path as a walk.) If
both endpoints of an M -alternating path belong to the set X of unmatched vertices, it is called an
M -augmenting path. Recall the following theorem from last time.

Theorem 1 A matching M is of maximum size if and only if G contains no M -augmenting path.

Figure 1: An M -augmenting path

Flowers, Stems, and Blossoms

The following construction is useful for finding M -augmenting paths. Given a graph G = (V, E) with
matching M ; construct a directed graph Ĝ = (V, A) with the same vertex set as G, and with edge set
determined by the rule that (u, w) ∈ A if and only if there exists v with (u, v) ∈ E \ M, (v, w) ∈ M .

ˆObserve that every M -augmenting path in G corresponds to a path in G which begins at a vertex in
X and ends at a neighbor of X . However, the converse is not true, because an M -alternating walk
may begin at a vertex in X and end at a neighbor of X , without being an M -augmenting path, if it
contains an odd cycle. Figure 2 illustrates an example of such a walk. This motivates the following
definition.

Definition 1 An M -flower is an M -alternating walk v0, v1, v2, . . . , vt (numbered so that (v2k−1, v2k) ∈
M, (v2k, v2k+1) �∈ M) satisfying:

1. v0 ∈ X.

2-1

X

Stem Blossom

Figure 2: An M -flower

2. v0, v1, v2, . . . , vt−1 are distinct.

3. t is odd.

4. vt = vi, i even.

The portion of the flower from v0 to vi is called the stem, while the portion from vi to vt is called
the blossom.

Lemma 2 Let M be a matching in G, and let P = (v0, v1, . . . , vt) be a shortest alternating walk
from X to X. Then either P is an M -augmenting path, or v0, v1, . . . , vj is an M -flower for some
j < t.

Proof: If v0, v1, . . . , vt are all distinct, P is an M -augmenting path. Otherwise, assume vi =
vj , i < j, and let j be as small as possible, so that v0, v1, . . . , vj−1 are all distinct. We shall prove
that v0, v1, . . . , vj is an M -flower. Properties 1 and 2 of a flower are automatic, by construction. It
cannot be the case that j is even, since then (vj−1, vj) ∈ M , which gives a contradiction in both of
the following cases.

•	 i = 0: (vj−1, vj) ∈ M contradicts v0 ∈ X .

•	 0 < i < j − 1: (vj−1, vj) ∈ M contradicts the fact that M is a matching, since vi is already
matched to a vertex other than vj−1.

This proves that j is odd. It remains to show that i is even. Assume, by contradiction, that i is
odd. Then vj+1 = vi+1 (since both are equal to the other endpoint of the matching edge containing
vj = vi), and we may delete the cycle from P to obtain a shorter alternating walk from X to X .
(See Figure 3.) �

Given a flower F = (v0, v1, . . . , vt) with blossom B, observe that for any vertex vj ∈ B it is
possible to modify M to a matching M ′ satisfying:

1. Every vertex of F belongs to an edge of M ′ except vj .

2.	 M ′ agrees with M outside of F , i.e. M � M ′ ⊆ F .

3.	 |M ′| = |M |.

2-2

1

v v6 5

v v v v =v v =v v v v0 1 2 3 7 4 8 9 10 11

Figure 3: An alternating walk from X to X which can be shortened.

To do so, we take M ′ to consist of all the edges of the stem which do not belong to M , together
with a matching in the blossom which covers every vertex except vj .

Whenever a graph G with matching M contains a blossom B, we may simplify the graph by
shrinking B, a process which we now define.

Definition 2 (Shrinking a blossom) Given a graph G = (V, E) with a matching M and a blos­
som B, the shrunk graph G/B with matching M/B is defined as follows:

• V (G/B) = (V \ B) ∪ {b}

• E(G/B) = E \ E[B]

• M/B = M \ E[B]

where E[B] denotes the set of edges within B, and b is a new vertex disjoint from V .

Observe that M/B is a matching in G, because the definition of a blossom precludes the possibility
that M contains more than one edge with one but not both endpoints in B. Observe also that G/B
may contain parallel edges between vertices, if G contains a vertex which is joined to B by more
than one edge.

The relation between matchings in G and matchings in G/B is summarized by the following
theorem.

Theorem 3 M is a maximum size matching in G if and only if M/B is a maximum size matching
in G/B.

Proof: (=⇒) Suppose N is a matching in G/B larger than M/B. Pulling N back to a set of edges
in G, it is incident to at most one vertex of B. Expand this to a matching in N + in G by adjoining

2 (|B| − 1) edges to match every other vertex in B. Then |N +| exceeds |M | by the same amount
that |N | exceeds |M/B|.

(⇐=) If M is not of maximum size, then change it to another matching M ′, of equal cardinality,
in which B is an entire flower. (If S is the stem of the flower whose blossom is B, then we may take
M ′ = M �S.) Note that M ′/B is of the same cardinality as M/B, and b is an unmatched vertex of
M ′/B. Since M ′ is not a maximum size matching in G, there exists an M ′-augmenting path P . At
least one of the endpoints of P is not in B. So number the vertices of P u0, u1, . . . , ut with u0 �∈ B,
and let ui be the first node on P which is in B. (If there is no such node, then ui = ut.) This
sub-path u0, u1, . . . , ui is an (M ′/B)-augmenting path in G/B. �

2-3

M := ∅

X := {unmatched vertices}

Form the directed graph ˆ
G.
while Ĝ contains a directed path P̂ from X to N (X)

Find such a path P̂ of minimum length.

P := the alternating path in G corresponding to P̂

if P is an M -augmenting path,

modify M by augmenting along P .
else

P contains a blossom B.

Recursively find a maximum size matching M ′ in G/B.

if |M ′| = |M/B| /* M is already a max matching. */

return M /* Done! */
else /* M can be enlarged */

Unshrink M ′ as in the proof of Theorem 3,
to obtain a matching in G of size > |M |.

end

Figure 4: Algorithm for computing a maximum matching

3 A polynomial-time maximum matching algorithm

The algorithm for computing a maximum matching is specified in Figure 4.
The correctness of the algorithm is established by Lemma 2 and Theorem 3. The running time

may be analyzed as follows. We can compute X and Ĝ in linear time, we can find P̂ in linear time
(by breadth-first search), and we can shrink a blossom in linear time. We can only perform O(n)
such shrinkings before terminating or increasing |M |. The number of times we increase |M | is O(n).
Therefore the algorithm’s running time is O(mn2). With a little more work, this can be improved
to O(n3). (See Schrijver’s book.) The fastest known algorithm, due to Micali and Vazirani, runs in √
time O(n m).

4 Combinatorial consequences of the algorithm

Our aim now is to use the analysis of the algorithm to derive the following two combinatorial
theorems, both of which were asserted in the last lecture.

Theorem 4 (Tutte-Berge Formula) For a graph G and a set of vertices U ⊆ V (G), let co(G\U)
denote the number of odd components of the graph G \ U , i.e. the number of components with an
odd number of vertices. Then the cardinality of a maximum size matching, ν(G), satisfies:

1
ν(G) = min [|V | + |U | − co(G \ U)] . (1)

U⊆V 2

Theorem 5 (Edmonds-Gallai Decomposition) Given a graph G, let

D(G) := {v : ∃ a maximum size matching missing v}

A(G) := N (D(G))

C(G) := V (G) \ (D(G) ∪ A(G))

2-4

A(G)

D(G)

C(G)

Figure 5: Edmonds-Gallai Decomposition

Then U = A(G) achieves the minimum on the right side of the Tutte-Berge formula, D(G) is the
union of the odd components of G\A(G), and C(G) is the union of the even components of G\A(G).
Moreover, every odd component of G \ A(G) is factor-critical. (A graph H is factor-critical if for
every vertex v, there is a matching in H whose only unmatched vertex is v.)

To prove these theorems, consider a maximum size matching M in G, take an unmatched vertex
x ∈ X , and consider all the vertices which can be reached by an alternating path from x. The first
edge on such a path must lie outside of M , the second edge must lie in M , and so on, leading to a
picture as in Figure 6.

Even

Odd

Even

Odd

Even
x

Figure 6: Vertices reachable by alternating paths from x.

Motivated by this picture, we make the define the following three subsets of V (G):

Even := {v : ∃ an alternating path of even length from X to v}

Odd := {v : ∃ an alternating path from X to v} \ Even

Free := {v : � ∃ an alternating path from X to v}

2-5

We will sometimes refer to a vertex as being even, odd, or free, according to which of these sets it
belongs to.

Claim 6 If there is an edge from Even to v, then there is an alternating walk of odd length from X
to v, and there is an alternating path from X to v.

Proof: If e = (u, v) is an edge between Even and v, and P is an alternating path of even length
from X to u, then an alternating walk of odd length from X to v is constructed as follows. If e ∈ M ,
then we take P and delete the final edge, which is necessarily e. If e �∈ M , then we append e to P .
If this alternating walk is not a path, it can only be because v lies on P , in which case P contains a
sub-path which is an alternating path from X to v. �

Corollary 7 In G there is no edge between Even and Free.

Define the shrunk graph G0 to be the graph obtained at the innermost level of the recursion
in the matching algorithm given above, on the final iteration of the while loop. Let M0 be the
maximum size matching in G0 computed by the algorithm. Since G0 has no flowers, and M0 is a
maximum matching, it follows that G0 has no alternating walk from X to X .

Claim 8 In G0, there is no edge between two vertices in Even.

Proof: If such an edge e = (u, v) exists, then by Claim 6, G0 contains an alternating walk P
of odd length from X to v. But v is even, so there is also an alternating path P ′ of even length
from X to v. Concatenating P with the reverse of P ′, we obtain an alternating walk from X to X ,
contradicting the definition of G0. �

It is worth noting that Claim 8 doesn’t necessarily hold in G. This is because all the vertices
of a blossom are even. (The stem is an even-length alternating path from X to one vertex v of the
blossom, and all other vertices of the blossom are reachable from v by an even-length alternating
path which goes around the blossom either clockwise or counter-clockwise.)

Claim 9 Even = D(G) = {v : ∃ a maximum-size matching missing v}.

Proof: Certainly if v is even then there a maximum-size matching M ′ missing v. Such a matching
is obtained by taking an even-length alternating path P from X to v and putting M ′ = M � P .
Conversely, if there exists a maximum-size matching M ′ missing v, then M � M ′ is a union of
even-length cycles and paths, and v is an endpoint of one of these paths, because it does not belong
to an edge of M ′. The other endpoint of this path P does not belong to an edge of M , i.e. it is an
element of X . This confirms that P is an even-length alternating path from X to v. �

Claim 10 Odd = A(G) = N(D(G)).

Proof: If v is odd, then there is an alternating path of odd length from X to v. The vertex
preceding v on this path must be even, which confirms that Odd ⊆ N(Even) = N(D(G)). The
reverse inclusion follows from Claim 6, which ensures that every vertex adjacent to Even belongs to
Even ∪ Odd. �

Claim 11 Free = C(G) = V (G) \ (D(G) ∪ A(G)).

Proof: Immediate from the definition of Free, and from the preceding two claims which identify
Even, Odd with D(G), A(G), respectively. �

Claim 12 In G0, every free vertex is matched to another free vertex by M , and every odd vertex is
matched to an even vertex by M .

2-6

Proof: Every vertex which is free or odd is incident to an edge of M , because no such vertex
may belong to X . If e = (u, v) is an edge of M with u odd, and if P is an odd-length alternating
path from x ∈ X to u, then P ∪ {e} is an even-length alternating path from X to v. (It is not
possible that v ∈ P because v �∈ X and every vertex in P \ {x} is already matched to a vertex of P
other than u.) This proves that every odd vertex is matched to an even vertex. That means a free
vertex may not be matched to an odd vertex, but it also may not be matched to an even vertex (by
Corollary 7), so every free vertex is matched to another free vertex. �

Claim 13 Every component of G \ A(G) is a subset of either D(G) or C(G). The even-cardinality
components are subsets of C(G), while the odd-cardinality components are subsets of D(G). More-
over, if M is a maximum-size matching in G, then every component H of D(G) satisfies one of the
following:

• |X ∩ H | = 1, and M ∩ δ(H) = ∅. (The coboundary of a vertex set U , denoted by δ(U), is the
set of edges with exactly one endpoint in U .)

•	 X ∩ H = ∅, M ∩ δ(H) contains exactly one edge, and this edge joins H to A(G).

Proof: The proof is by induction on the number of blossoms which are shrunk during the execution
of the maximum matching algorithm. If no blossoms are shrunk, then G = G0, and the claim is a
consequence of the following observations:

1. If u is an even vertex of G0, then every neighbor of u is in Odd = A(G0). (By Corollary 7 and
Claim 8.)

2. Therefore every vertex u in Even = D(G0) is an isolated vertex of G0 \ A(G0). Moreover, u
either belongs to X , or is joined to A(G0) by an edge of M .

3. For every component H of Free = C(G0), the edge set M ∩ E[H] is a perfect matching in H .
(By Claim 12.)

Now for the induction step, suppose B is a blossom in G and that the claim holds for G/B. Then
B corresponds to a vertex b ∈ G/B which is an even vertex in some component Hb of D(G/B).
(The stem of the flower containing B corresponds to an even-length alternating path from X to b
in G/B.) When we inflate b to B, we claim that:

1. Except for b, all even vertices of G/B remain even. All vertices of B are also even in G.

2. All odd vertices of G/B remain odd.

3. All free vertices of G/B remain free.

If these are true, then we’ll be done, because this says that inflating b to B doesn’t change the set
A(G), and it doesn’t change the components of G \ A(G) except that a vertex of Hb inflates into
an odd cycle. Note that this doesn’t change the parity of |V (Hb)|. Also, inflating b to B doesn’t
change the number of unmatched vertices in Hb, nor does it change the number of matching edges
in δ(H).

∗It remains to prove (1)-(3). For (1), let b ∈ B denote the vertex where the stem joins the
blossom. If P = (v0, v1, . . . , vt) is an even-length path in G/B with v0 ∈ X and vt �= b, then one of
the following cases applies.

•	 P avoids b. In this case, P is also a path in G, and there is nothing to prove.
∗•	 b = vs, s even. In this case, the sub-path (v0, . . . , vs) lifts to a path P0 = (v0, . . . , vs−1, b)

in G ending with the last edge of the stem. The next edge (vs, vs+1) corresponds to an edge
(w, vs+1) in G, with w ∈ B. Let P1 be an even-length alternating path in B from b∗ to w. We
can splice together P0, P1, and the path P2 = (w, vs+1 , vs+2, . . . , vt) to obtain an even-length
alternating path in G from v0 to vt.

2-7

′

�

∗ •	 b = vs, s odd. In this case, the sub-path (vs, . . . , vt) lifts to a path P2 = (b , vs+1, vs+2, . . . , vt)
in G beginning with the last edge of the stem. The desired even-length path in G from v0 to
vt is constructed by a splicing process as before, but this time in reverse.

Finally, every vertex w in B is an even vertex of G, because we may obtain an even-length alternating
∗path from X to w by taking the stem and appending an even-length path in B from b to w.

∗To prove (2) and (3), let A (G) denote the set of vertices in G which are odd vertices of G/B.
∗(We wish to eventually prove that A (G) = A(G), but for now we will not assume it.) From the

∗induction hypothesis, we have the following characterization of components of G \A (G): each such
component H satisfies

1. |V (H)| is even. X ∩ H = ∅, and M ∩ δ(H) = ∅.
2. |V (H)| is odd. |X ∩ H | = 1, and M ∩ δ(H) = ∅, or

∗3. |V (H)| is odd. X ∩ H = ∅, and M ∩ δH consists of a single edge joining H to A (G).

Components of the first two types will be called inaccessible. Components of the third type will
be called accessible, and the edge M ∩ δ(H) will be called the gateway to such a component. The
terminology is justified by the following characterization of alternating paths in G which begin at a
vertex x ∈ X : such a path P does not visit any inaccessible component except for the one containing
x, and if P visits an accessible component H , then it reaches H by traversing the gateway edge. The

∗proof is by contradiction: if not, let H0 be the first component of G \A (G) not containing x which
∗is reached by traversing an edge e = (v, w) �∈ M . We must have u ∈ A (G) since there are no edges

∗between distinct components of G \ A (G). The edge preceding e in P is an edge e′ = (u, v) ∈ M .
∗	 ∗Since u ∈ A (G), e′ is a gateway edge and v belongs to some other component H1 of G \ A (G). P

could not have reached H1 by traversing e (since it is a simple path, and it exits H1 by traversing
e′), so it must have reached H1 via a non-gateway edge, contradicting the fact that H0 was the first
such component.

This characterization of alternating paths in G immediately proves (3), since components of
∗G \A (G) corresponding to free vertices of G/B satisfy (3) and are inaccessible. To see that it also

∗proves (2), consider any v ∈ A (G). In G/B there is an alternating path of odd length from X to v;
this is also an alternating path in G, so all that remains is to show that G contains no alternating
path of even length from X to v. Let e = (u, v) be the edge of M containing v. If P is an alternating
path of even length from X to v, then e must be the last edge of P . But u belongs to an accessible
component H , and e is its gateway edge. But this means the only way for P to reach H is to traverse
e (because P starts in X , and X ∩ H = ∅), and this contradicts the fact that P is a simple path.

1Claim 14 |M | = [|V | + |A(G)| − co(G \ A(G))] .2

Proof: Every vertex in V \ X belongs to one and only one edge in M , so

1 |M | =
2

(|V | − |X |) .	 (2)

Now, Claim 13, establishes that each odd component H of G \ A(G) satisfies one of the following
two criteria:

• |X ∩ H | = 1, M ∩ δ(H) = ∅.
•	 X∩H = ∅, and M ∩δ(H) consists of a single edge joining H to A(G). (Moreover, every vertex

in A(G) is an endpoint of exactly one such edge.)

2-8

Hence,
co(G) = |X |+ |A(G)|. (3)

Combining (2) and (3) we obtain the desired formula. �
This claim establishes that

1
ν(G) ≥ min [|V | + |U | − co(G \ U)] .

U⊆V 2

The reverse inequality is trivial, so we have proved the Tutte-Berge formula. Note that we have also
established all of the claims in the Edmonds-Gallai Decomposition Theorem, except for the assertion
that every component of D(G) is factor-critical. This part of the theorem will be addressed in the
next lecture.

2-9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

