
18.S096: Homework Problem Set 1 (revised)

Topics in Mathematics of Data Science (Fall 2015)

Afonso S. Bandeira

Due on October 6, 2015 Extended to: October 8, 2015

This homework problem set is due on October 6, at the start of class

Try not to look up the answers, you’ll learn much more if you try to
think about the problems without looking up the solutions.

You can work in groups but each student must write his/her own
solution based on his/her own understanding of the problem.

If you need to impose extra conditions on a problem to make it easier,
state explicitly that you have done so. Solutions where extra conditions
were assumed will also be graded (probably scored as a partial answer).

1.1 Linear Algebra

Problem 1.1 Show the resut we used in class: If M ∈ Rn×n is a symmetric
matrix and d ≤ n then

max Tr
(
UTMU

U∈Rn×d

UTU=Id×d

) ∑d
(+)

= λ (M),k
k=1

(+)
where λ is the largest k-th eigenvalue of M .k
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1.2 Estimators

Problem 1.2 Given x1, · · · , xn i.i.d. samples from a distribution X with
mean µ and covariance Σ, show that

1
µn =

∑n 1
xk, and Σn =

n
k=1

∑n
T(xk µn) (xk µn) ,

n
− −

− 1
k=1

are unbiased estimators for µ and Σ, i.e., show that E [µn] = µ and E [Σn] =
Σ.

1.3 Random Matri

Recall the definition of a
random matrix W ∈ Rn

independent Wii ∼ N (0,
trix emsemble is invaria
any U ∈ O(n). Also, the

to the so-called semicirc

ces

standard gaussian Wigner Matrix W : a symmetric
×n whose diagonal and upper-diagonal entries are
2) and, for i < j, Wij ∼ N (0, 1). This random ma-

nt under orthogonal conjugation: UTWU ∼ W for
distribution of the eigenvalues of 1√ W converges

n

ular law with support [−2, 2]

dSC(x) =
√

4− x21[−2,2](x).

(try it in draw an histogram of the distribution of the eigenvalues
of 1√ W for, say n = 500.)

n

In the next problem, you will show that the largest eigenvalue of 1√ W
n

has expected value at most 2.1 For that, we will make use of Slepian’s
Comparison Lemma.

Slepian’s Comparison Lemma is a crucial tool to compare Gaussian Pro-
cesses. A Gaussian process is a family of gaussian random variables indexed
by some set T , more precisely is a family of gaussian random variables
{Xt}t T (if T is finite this is simply a gaussian vector). Given a gaussian pro-∈
cess Xt, a particular quantity of interest is E [maxt T X In∈ t]. tuitively, if we
have two Gaussian processes Xt and[ Yt with mean zero E [Xt] = E [Yt] = 0,
for all t ∈ T and same variances E X2

t

]
= E Y 2

t then the process that has
the “least correlations” should have a larger maxim

[ ]
um (think the maximum

entry of vector with i.i.d. gaussian entries versus one always with the same

1Note that, a priori, there could be a very large eigenvalue and it would still not
contradict the semicircular law, since it does not predict what happens to a vanishing
fraction of the eigenvalues.
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gaussian entry). A simple version of Slepian’s Lemma makes this intuition
precise:2

In the conditions above, if for all t1, t2 ∈ T

E [Xt1Xt2 ] ≤ E [Yt1Yt2 ] ,

then

E
[
maxXt
t∈T

]
≥ E

[
maxYt
t∈T

]
.

A slightly more general version of it asks that the two Gaussian pro-
cesses Xt and Yt have mean zero E [Xt] = E [Yt] = 0, for all t ∈ T but not
necessarily the same variances. In that case it says that: If or all t1, t2 ∈ T

E 2[Xt1 −
2Xt2 ] ≥ E [Yt1 − Yt2 ] , (1)

then

E
[
maxXt

]
≥ E

[
maxYt .

t∈T t∈T

]
Problem 1.3 We will use Slepian’s Comparison Lemma to show that

Eλmax(W ) ≤ 2
√
n.

1. Note that
λmax(W ) = max vTWv,

v: ‖v‖2=1

which means that, if we take for unit-norm v, Yv := vTWv we have
that

λmax(W ) = E
[

max Yv ,
v∈Sn−1

]
2. Use Slepian to compare Yv with 2Xv defined as

Xv = vT g,

where g ∼ N (0, In×n)

3. Use Jensen’s inequality to upperbound E [maxv .∈ n−1 Xv]S

2Although intuitive in some sense, this is a delicate statement about Gaussian random
variables, it turns out not to hold for other distributions.
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Problem 1.4 In this problem you’ll derive the limit of the largest eigenvalue
of a rank 1 perturbation of a Wigner matrix.

For this problem, you don’t have to justify all of the steps rig-
orously. You can use the same level of rigor that was used in
class to derive the analogue result for sample covariance matri-
ces. Deriving this phenomena rigorously would take considerably
more work and is outside of the scope of this homework.

Consider the matrix M = 1√ W + βvvT for ‖v
n

‖2 = 1 and W a stan-

dard Gaussian Wigner matrix. The purpose of this homework problem is to
understand the behavior of λmax(M). Because W is invariant to orthogonal
conjugation we can focus on understanding

λmax

(
1√ W + βe1e

T

n 1

)
.

Use the same techniques as used in class to derive the behavior of this
quantity. √

(Hint: at some point, you’ll probably have to inte ate
∫ 2

gr −2
4−x2

y−x dx. You

can use the fact that, for y > 2,
∫ 2
−2

√
4−x2

y−x dx = π
(
y −

√
y2 − 4 (you can

also use an integrator software, such as Mathematica, for this).

)

1.4 Diffusion Maps and other embeddings

Problem 1.5 The ring graph on n nodes is a graph where node 1 < k <
n is connected to node k − 1 and k + 1 and node 1 is connected to node
n. Derive the two-dimensional diffusion map embedding for the ring graph
(if the eigenvectors are complex valued, try creating real valued ones using
multiplicity of the eigenvalues). Is it a reasonable embedding of this graph
in two dimensions?

Problem 1.6 (Multidimensional Scaling Revised) Suppose you want
to represent n data points in Rd and all you are given is estimates for their
Euclidean distances δij ≈ ‖xi − xj‖22. Multiimensional scaling attempts to
find an d dimensions that agrees, as much as possible, with these estimates.
Organizing X = [x1, . . . , xn] and consider the matrix ∆ whose entries are
δij.

1. Show that, if δij = ‖xi − xj‖22 then there is a choice of xi (note that
the solution is not unique, as a translation of the points will preserve
the pairwise distances, e.g.) for which

XT 1
X = −

2
H∆H,
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where H = I − 111T .n

2. If the goal is to find points in Rd, how would you do it (keep part 1 of
the question in mind)?

(The procedure you have just derived is known as Multidimensional Scal-
ing)

This motivates a way to embed a graph in d dimensions. Given two nodes
we take δij to be the square of some natural distance on a graph such as, for
example, the geodesic distance (the distance of the shortest path between the
nodes) and then use the ideas above to find an embedding in Rd for which
Euclidean distances most resemble geodesic distances on the graph. This is
the motivation behind a dimension reduction technique called ISOMAP (J.
B. Tenenbaum, V. de Silva, and J. C. Langford, Science 2000).

5



MIT OpenCourseWare
http://ocw.mit.edu

18.S096 Topics in Mathematics of Data Science
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

