
10.3.2 The semidefinite relaxation

We will now present a semidefinite relaxation for (108) (see [BCSZ14]).
Let us identify Rl with the L×L permutation matrix that cyclicly permutes the entries fo a vector
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and can rewrite (108) as

max Tr(CX)
s. t. Xii = IL×L

Xij is a circulant permutation matrix (110)
X � 0
rank(X) ≤ L,

where C is the rank 1 matrix given by

1

C


y

=

 y2
T T

.. 2 yTn R ×

.
· · ∈ nL nL y1 y · , (111)

yn

 [ ]

T


with blocks Cij = yiyj .
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Open Problem 10.3 For which values of noise do we expect that, with high probability, the semidef-
inite program (113) is tight? In particular, is it true that for any σ by taking arbitrarily large n the
SDP is tight with high probability?

The constraints Xii = IL L and rank(X) ≤ L imply that rank(X) = L and X× ij ∈ O(L). Since the
only doubly stochastic matrices in O(L) are permutations, (110) can be rewritten as

max Tr(CX)
s. t. Xii = IL×L

Xij1 = 1
Xij is circulant (112)
X ≥ 0
X � 0
rank(X) ≤ L.

Removing the nonconvex rank constraint yields a semidefinite program, corresponding to (??),

max Tr(CX)
s. t. Xii = IL×L

Xij1 = 1
(113)

Xij is circulant
X ≥ 0
X � 0.

Numerical simulations (see [BCSZ14, BKS14]) suggest that, below a certain noise level, the semidef-
inite program (113) is tight with high probability. However, an explanation of this phenomenon
remains an open problem [BKS14].
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