6.4 Partial Fourier matrices satisfying the Restricted Isometry Property

While the results above are encouraging, rarely one has the capability of designing random gaussian
measurements. A more realistic measurement design is to use rows of the Discrete Fourier Transform:
Consider the random M x N matrix obtained by drawing rows uniformly with replacement from the
N x N discrete Fourier transform matrix. It is known [CT06] that if M = Qgs(K polylog N), then the
resulting partial Fourier matrix satisfies the restricted isometry property with high probability.

A fundamental problem in compressed sensing is determining the order of the smallest number M
of random rows necessary. To summarize the progress to date, Candes and Tao [CTO06] first found that
M = Qs(K log® N) rows suffice, then Rudelson and Vershynin [RV08] proved M = Qs(K log* N), and
more recently, Bourgain [Boul4] achieved M = Qs(K log® N); Nelson, Price and Wootters [NPW14]
also achieved M = Qs(K log® N ), but using a slightly different measurement matrix. The latest result
is due to Haviv and Regev [HR] giving an upper bound of M = Qs(K log® klog N). As far as lower
bounds, in [BLM15] it was shown that M = Qs(K log N) is necessary. This draws a contrast with
random Gaussian matrices, where M = Qs(K log(N/K)) is known to suffice.

Open Problem 6.1 Consider the random M x N matriz obtained by drawing rows uniformly with
replacement from the N x N discrete Fourier transform matrixz. How large does M need to be so that,
with high probability, the result matriz satisfies the Restricted Isometry Property (for constant 6)?
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