
8.3 A Sums-of-Squares interpretation

We now give a different interpretation to the approximation ratio obtained above. Let us first slightly
reformulate the problem (recall that wii = 0).
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where LG = DG−W is the Laplacian matrix, DG is a diagonal matrix with (DG)ii = deg(i) =
∑

j wij
and Wij = wij .

This means that we rewrite (66) as

max 1yTLGy4 (72)
yi = ±1, i = 1, . . . , n.

Similarly, (68) can be written (by taking X = yyT ) as

max 1 Tr (LGX)4
s.t. X � 0 (73)

Xii = 1, i = 1, . . . , n.

Indeed, given
Next lecture we derive the formulation of the dual program to (73) in the context of recovery in

the Stochastic Block Model. Here we will simply show weak duality. The dual is given by

min Tr (D)
s.t. D is a diagonal matrix

D − 1
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(74)

Indeed, if X is a feasible solution to (73) and D a feasible solution to (74) then, since X and
D − 1LG are both positive semidefinite Tr4
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since D is diagonal and Xii = 1. This shows weak duality, the fact that the value of (74) is larger
than the one of (73).

If certain conditions, the so called Slater conditions [VB04, VB96], are satisfied then the optimal
values of both programs are known to coincide, this is known as strong duality. In this case, the
Slater conditions ask whether there is a matrix strictly positive definite that is feasible for (73) and
the identity is such a matrix. This means that there exists D\ feasible for (74) such that

Tr(D\) = RMaxCut.

Hence, for any y ∈ Rn we have
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Note that (75) certifies that no cut of G is larger than RMaxCut. Indeed, if y ∈ {±1}2 then y2
i = 1

and so
1RMaxCut−
4
yTLGy = yT

(
D\ − 1

4
LG

)T
.

Since D\ − 1
4LG � 0, there exists V such that D\ − 1LG = V V T with the columns of V denoted by4
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In other words, RMaxCut − yTLGy is, in the hypercube (y 1 2) a sum-of-squares of degree 2.4 ∈ {± }
This is known as a sum-of-squares certificate [BS14, Bar14, Par00, Las01, Sho87, Nes00]; indeed, if a
polynomial is a sum-of-squares naturally it is non-negative.

Note that, by definition, MaxCut− 1yTLGy is always non-negative on the hypercube. This does4
not mean, however, that it needs to be a sum-of-squares33 of degree 2.

(A Disclaimer: the next couple of paragraphs are a bit hand-wavy, they contain some of intuition
for the Sum-of-squares hierarchy but for details and actual formulations, please see the references.)

The remarkable fact is that, if one bounds the degree of the sum-of-squares certificate, it can be
found using Semidefinite programming [Par00, Las01]. In fact, SDPs (74) and (74) are finding the
smallest real number Λ such that Λ − 1yTLGy is a sum-of-squares of degree 2 over the hypercube,4
the dual SDP is finding a certificate as in (75) and the primal is constraining the moments of degree
2 of y of the form Xij = yiyj (see [Bar14] for some nice lecture notes on Sum-of-Squares, see also
Remark 8.4). This raises a natural question of whether, by allowing a sum-of-squares certificate of
degree 4 (which corresponds to another, larger, SDP that involves all monomials of degree ≤ 4 [Bar14])
one can improve the approximation of αGW to Max-Cut. Remarkably this is open.

Open Problem 8.2 1. What is the approximation ratio achieved by (or the integrality gap of) the
Sum-of-squares degree 4 relaxation of the Max-Cut problem?

2. The relaxation described above (of degree 2) (74) is also known to produce a cut of 1 − O (
√
ε)

when a cut of 1− ε exists. Can the degree 4 relaxation improve over this?

3. What about other (constant) degree relaxations?

33This is related with Hilbert’s 17th problem [Sch12] and Stengle’s Positivstellensatz [Ste74]
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