
SOME HINTS AND ANSWERS 

TO 18.S34 SUPPLEMENTARY PROBLEMS 
(Fall 2007) 

2.	 (b) Answer: (n3 + 3n2 + 8n)/6, which is 13 for n = 3. For a picture, 
see M. Gardner, The 2nd Scientific American Book of Mathemat­

ical Puzzles & Diversions, Simon and Schuster, New York, 1961, 
p. 150. 

(c) 18, according to the previous reference, p. 149. 

4. (b) Hint: Let f(n) be the last nonzero digit of n!, so f(1) = 1, f(2) = 
2, f(3) = 6, f(4) = 4, f(5) = f(6) = 2, etc. Use the identity 

n−1 
⎧ (5i + 1)(5i + 2)(5i + 3)(5i + 4) 

(5n)! = 10n n! 
2 

i=0 

to show that f(5n) � 2nf(n) (mod 10). 

Note: The complete answer for evaluating f(n) is the following. Let 
· · · a2a1a0 be the base 5 expansion of n (so n = 

� 
ai5

i , 0 � ai � 4). 
Then if n ≡= 3, we have 

f(n) � 2a1+2a2+3a3 +···+|{i : ai=2}|+2·|{i : ai=4}| (mod 10). 

For instance, 10000 in base 5 is 310000, so 

f(10000) � 24·1+5·3+0+0 � 219 � 8 (mod 10). 

Hence f(10000) = 8. 
⎨ ⎩ 

7.	 (a) Answer: n
k is odd if and only if the following holds: If n = 

a0 + a12
1 + a22

2 + · · · and k = b0 + b12
1 + b22

2 + · · · denote the 
binary expansions of n and k, then bi � ai for all i (i.e., bi = 0 if 
ai = 0). This is a result of Lucas. 

⎨ ⎩ 
(b)	 Answer: The largest power of p dividing n

k is equal to the number 
of carries in adding k and p − k in base p (using the usual grade-
school algorithm for addition). This is a result of Kummer. 
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8. (a) Hint: Suppose P is a convex polygon in the plane with n sides and 
all angles equal. Then the side lengths a0, a1, . . . , an−1 (in that order) 
are possible if and only if 

a0 + a1� + a2�
2 + · · · + an−1�

n−1 = 0, 

where � = e2�i/n (a primitive nth root of unity). One also needs the 
fact that if n = p, a prime number, and if f(x) is a polynomial with 
integer coefficients satisfying f(�) = 0, then f(x) is divisible by 1 + x + 
x2 + · · · + xp−1 . 

11. Here is an explicit example of such a sequence. Define for i � 0, 

0, if the number of 1’s in the binary expansion of i is even 
bi = 

1, if odd. 

Thus b0b1b2 · · · = 0110100110010110 · · ·. Now define 

� 1, if bi = bi+1 

ai = 2, if bi = 0, bi+1 = 1 
3, if bi = 1, bi+1 = 0. 

Thus a0a1a2 · · · = 213231213123213 · · ·. This works! 

References: This problem originated with Morse and Hedlund, and 
there is now a huge literature on it. Some relatively accessible references 
are: 

• G. Braunholtz, Amer. Math. Monthly 70 (1963), 675–676. 

• D. Hawkins and W. Mientka, Math. Student 24 (1956), 185–187. 

• J. Leech, Math. Gazette 41 (1957), 277–278. 

• P. A. Pleasants, Math. Proc. Cambridge Phil. Soc. 68 (1970), 267– 
274. 

• J. C. Shepherdson, Math. Gazette 42 (1958), 306. 

• I. Stewart, Scientific American, October, 1995, pp. 182–183. 

13. False! The first counterexample is at n = 777,451,915,729,368. See S. 
W. Golomb and A. W. Hales, Hypercube Tic-Tac-Toe, in More Games 
of No Chance (R. J. Nowakowski, ed.), MSRI Publications 42, Cam­
bridge University Press, 2002, pp. 167–182. There it is stated that the 
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first counterexample is at n = 6,847,196,937, an error due to faulty 
multiprecision arithmetic. The correct value was found by J. Buhler in 
2004 and is reported in S. Golomb, “Martin Gardner and Tictacktoe” 
(unpublished). 

24.	 Answer: yes. The first such pair of numbers was found by R. L. Graham 
in 1964. At present the smallest known pair, found by M. Vsemirnov 
in 2004, is (a, b) = (106276436867, 35256392432). See 

www.cs.uwaterloo.ca/journals/JIS/VOL7/Vsemirnov/vsem5.pdf 

25.	 Hint: 

a1 = 1 

a10 = 16 

a100 = 161 

a1000 = 1618 

a10000 = 16180 

a100000 = 161803 

a1000000 = 1618033. 

33. (a) The function f(t) = t log t satisfies f ��(t) = 1/t > 0. Hence f(t) is 
strictly convex, i.e., every line segment joining two points on its graph 
lies above the graph. Then the diagram below shows that if 0 < s < t 
then 

� � 
1 1 1 1 

f s + t < f(s) + f(t). 
2 2 2 2 

f(t) = t log t 

s 1

2 (s + t) t 
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� � � � 
Now set s = xp and t = yp, where x ≡ Then= y. 

xp + yp xp + yp 1 p 1 plog � xp log x + yp log y ,
2 2 2 2

so	
� � 

xp + yp xp log xp + yp log yp 

log <	 . (2)
2	 xp + yp 

Let M(p) = Mp(x, y) = 
⎨ 

xp+
2 

yp ⎩1/p 
. It is easy to compute that 

p	 pp2M �(p) xp log xp + yp log y
� 

xp + y
� 

=	 − log . 
M(p) xp + yp	 2 

Thus by (2), p2M �(p)/M(p) > 0, so M �(p) > 0. This means that M(p) 
is a strictly increasing function of p, as was to be shown. 

34. For a solution using only calculus (but very tricky),	 see Problem 58 
on page 229 of G. Klambauer, Problems and Propositions of Analysis. 
This result is originally due to K. F. Gauß. See also the book J. Borwein 
and P. Borwein, Pi and the AGM, Wiley-Interscience, New York, 1998. 

35. (b) Answer: e−e � x � e1/e. For a proof of this difficult result (orig­
inally due to L. Euler), see Problem 20 on page 186 of Klambauer’s 
book mentioned above. For 0 < x < e−e it is interesting to run the 
recurrence on a calculator and see why it doesn’t converge. 

36.	 All points x in T achieve the minimum! 

37.	 Answer: Let p ≡= 2, 5. Then Fp−1 is divisible by p if and only if the 
congruence


x 2 � 5 (mod p)


has an integer solution; otherwise Fp+1 is divisible by p. (Also F3 

is divisible by 2.) In number theory courses one shows (using the 
quadratic reciprocity law) that x2 � 5 (mod p) has an integer solu­
tion (for p ≡ 5) if and only if p � 1 or p � 4 (mod 5). = 2, 

38. (a) We have f(3) = 10, achieved by 
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More generally, if A is a partitioning of a square (meeting the conditions 
of the problem) for n with k squares, then the following partitioning 
for n + 1 has 2k + 2 squares. 

A 

A 

This leads easily to the lower bound f(n) � 3 · 2n−1 − 2. 

42. Simply write the numbers from 1 to n2 in their usual order! For exam­
ple, 

1	 2 3 4 5 
6	 7 8 9 10 
11	 12 13 14 15 . 
16	 17 18 19 20 
21	 22 23 24 25 

n43.	 Answer: f(n) = 
⎨ 

2 

⎩ 
+ 1 = 1

2 (n
2 − n + 2). 

44.	 Answer: Write n in binary and read it in ternary to get an. For in­
stance, 1, 000, 000 = 219 + 218 + 217 + 216 + 214 + 29 + 26, so a1,000,000 = 
319 + 318 + 317 + 316 + 314 + 39 + 36 = 1, 726, 672, 221. Once the result 
is guessed it is not difficult to prove by induction. 

45. (b) Coordinatize the squares of the m × n rectangle as follows: 
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· · · 

0, 2 1, 2 2, 2 

··· 
0, 1 1, 1 2, 1 

0, 0 1, 0 2, 0 

Let P be the set of coordinates of the lower left-hand squares of the 
a × b boards in the tiling. Let Q be the set of coordinates of the lower 
left-hand squares of the b × a boards. Let 

A(x, y) = (1 + x + x 2 + · · · + x a−1)(1 + y + y 2 + · · · + y b−1) 

B(x, y) = (1 + x + x 2 + · · · + x b−1)(1 + y + y 2 + · · · + y a−1). 

It’s not hard to see from the definition of tiling that 

x i yjA(x, y) + x i yjB(x, y) 
(i,j)�P	 (i,j)�Q 

= (1 + x + x 2 + · · · + x m−1)(1 + y + y 2 + · · · + y n−1). 

Now let x = y = e2�i/a. Then A(x, y) = B(x, y) = 0 [why?]. Hence 

(1 + x + x 2 + · · · + x m−1)(1 + y + y 2 + · · · + y n−1) = 0. 

Thus either 1 + x + x2 + · · · + xm−1 = 0, in which case a |m [why?], or 
1 + y + y2 + · · · + yn−1 = 0, in which case a |n. 

46. See the article by Stan Wagon in American Mathematical Monthly 94 
(1987), 601–617. This is an entertaining and accessible paper which 
gives fourteen (!) solutions to the problem. 

47. No.	 Consider the “inner” angle of a nonconvex quadrilateral. In a 
dissection of a convex polygon P into n nonconvex quadrilaterals, the 
sum of the angles about the inner vertex of each quadrilateral is 360� , 
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for a total “inner angle sum” of at least n · 360� (since there must be 
one interior vertex for each angle of a quadrilateral that is greater than 
180�). But the sum of all the internal angles of a quadrilateral is 360� , 
so the total sum of all angles in the dissection in n · 360� . This leaves 
no room for angles on the boundary of P . 

49. There are no such polynomials of degree less than 12. Three such 
polynomials (up to scalar multiplication) are known of degree 12. One 
is 

13750x 12 + 5500x 11 − 1100x 10 + 440x 9 − 220x 8 + 220x 7 

−15x 6 − 50x 5 + 10x 4 − 4x 3 + 2x 2 − 2x − 1. 

See pp. 261–263 of M. Kreuzer and L. Robbiano, Computational Com­

mutative Algebra 1, Springer-Verlag, Berlin, 2000. More generally, let 
K(f(x)) denote the number of nonzero coefficients of f(x) and choose 
any � > 0. One can use the above example to construct a polynomial 
g(x) such that K(g(x)2) < �K(g(x)). 
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