35.

36.

37.

38.

39.
40.

18.566 PROBLEMS #2
Spring 2003

(%) Let f(n) denote the number of subsets of Z /nZ (the integers modulo
n) whose elements sum to 0 (mod n) (including the empty set (). For
instance, f(5) = 8, corresponding to @, {0}, {1,4}, {0,1,4}, {2,3},
{0,2,3}, {1,2,3,4}, {0,1,2,3,4}. When n is odd, f(n) is equal to
the number of “necklaces” (up to cyclic rotation) with n beads, each
bead colored white or black. For instance, when n = 5 the necklaces
are (writing 0 for white and 1 for black) 00000, 00001, 00011, 00101,
00111, 01011, 01111, 11111. (This is easy if n is prime.)

In how many ways can n square envelopes of different sizes by arranged
by inclusion? For instance, with six envelopes A, B,C, D, E, F' (listed
in decreasing order of size), one way of arranging them would be F' €
CeB,E € B,D € A, where I € J means that envelope [ is contained
in envelope J.

Let w = ajay---a, be a permutation of 1,2,...,n, denoted w € G,,.
We can also regard w as the bijection w : [n] — [n] defined by w(i) = a;.
We say that ¢ is a fized point of w if w(i) =4 (or a; = i). The total
number of fixed points of all w € &,, is n!.

An inversion of w is a pair (4,j) for which ¢ < j and a; > a;. Let
inv(w) denote the number of inversions of w. Then

D@ =1+ +g+¢) - (I+g+--+¢" ).
weS,

For any w € &, inv(w) = inv(w™1).

How many permutations w = aqas---a, € G,, have the property that
for all 1 < ¢ < n, the numbers appearing in w between 7 and ¢ + 1
(whether 7 is to the left or right of i + 1) are all less than 7?7 An
example of such a permutation is 976412358.
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How many permutations aias---a, € &, satisfy the following prop-
erty: if 2 < j < n, then |a; — a;| = 1 for some 1 < ¢ < j?7 E.g., for
n = 3 there are the four permutations 123, 213, 231, 321.

A derangement is a permutation with no fixed points. Let D(n) denote
the number of derangments of [n] (i.e., the number of w € &,, with no
fixed points). (Set D(0) = 1.) Show that

1 1 n 1
D(n):n!(l—ﬂ-l-a—---—i-(—l) ﬁ) (2)
NOTE. A rather complicated recursive bijection follows from a gen-
eral technique for converting Inclusion-Exclusion arguments to bijec-
tive proofs. It would be nice, however, to have a “direct” proof of the
identity
n! n! n! n!
Tyl
D(n)+1!+3!+ —n.+2!+4!+ :
In other words, the number of ways to choose a permutation w € S,
and then choose an odd number of fixed points of w, or instead to
choose a derangement in &,,, is equal to the number of ways to choose
w € &, and then choose an even number of fixed points of w.

Show that

D(n)=(n—-1)(D(n—-1)+D(n-2)), n>1.

Show that
D(n) =nD(n —1)+ (—1)".

(Trivial from (2), but surprisingly tricky to do bijectively.)
Let mq,...,m, € Nand »_im; = n. Show that the number of w € &,

whose disjoint cycle decomposition contains exactly m; cycles of length

1 is equal to
n!

1 m1! 2m2 m2! <. emMn mn' ’
Note that, contrary to certain authors, we are including cycles of length
one (fixed points).
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A fized point free involution in S, is a permutation w € G, satisfying
w? = 1 and w(i) # 4 for all 4 € [2n]. The number of fixed point free
involutions in &y, is 2n — ) :=1-3-5---(2n — 1).

NoTe. This problem is a special case of Problem 45. For the present
problem, however, give a factor-by-factor explanation of the product
1-3-5---(2n—1).

If X CP, then write —X = {—n : n € X}. Let g(n) be the number
of ways to choose a subset X of [n], and then choose fixed point free
involutions 7 on X U (—X) and 7 on X U (—X), where X = {i € [n] :
i ¢ X}. Then g(n) =2"nl.

Let n > 2. The number of permutations w € G,, with an even number
of even cycles (in the disjoint cycle decomposition of w) is n!/2.

Let ¢(n, k) denote the number of w € &,, with k cycles (in the disjoint
cycle decomposition of w). Show that

n

Zc(n,k)xk=x(:r+1)(x+2)---(x+n—1).

Try to give two bijective proofs, viz., first letting x € P and showing
that both sides are equal as integers, and second by showing that the
coefficients of z* on both sides are equal.

Let w be a random permutation of 1,2, ..., n (chosen from the uniform
distribution). Fix a positive integer 1 < k < n. What is the probability
that in the disjoint cycle decomposition of w, the length of the cycle
containing 1 is £7 In other words, what is the probability that & is the
least positive integer for which w*(1) = 17

NOTE. Let p, be the desired probability. Then p,x = fux/n!, where
fnk 18 the number of w € G,, for which the length of the cycle containing
1 is k. Hence one needs to determine the number f,; by a bijective
argument.

A record (or left-to-right mazimum) of a permutation ajas---a, is a
term a; such that a; > a; for all 7 < j. The number of w € &,, with &
records equals the number of w € &,, with & cycles.
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(?) Let a(n) be the number of permutations w € &,, that have a square
root, i.e., there exists u € &, satisfying u?> = w. Then a(2n + 1) =
(2n 4+ 1)a(2n). (This might be easy.)

Let w =a;---a, € 6,,. An excedance of w is a number 7 for which
a; > i. A descent of w is a number ¢ for which a; > a;,1. Show that
the number of w € &,, with k£ excedances is equal to the number of
w € &, with k descents. (This number is denoted A(n, k + 1) and is
called an Fulerian number.)

Continuing the previous problem, a weak excedance of w is a number
1 for which a; > ¢. Show that the number of w € &,, with k£ weak
excedances is equal to A(n,k) (the number of w € &, with £ — 1
excedances).

Let 41,...,9% € N, > i; = n. The multinomial coefficient (Z.1 " Zk)
is defined combinatorially to be the number of permutations of the

multiset {1%,...,k%}. For instance, (,;,) = 12, corresponding to the

twelve permutations 1223, 1232, 1322, 2123, 2132, 2213, 2231, 2312,
2321, 3122, 3212, 3211. Then

( n ) n!
i e ) Tl g

The descent set D(w) of w € &, is the set of descents of w. E.g.,
D(47516823) = {2,3,6} Let S = {bl, .. -;bk—l} - [n - 1], with b <
bg <0< bk—l- Let

a,(S) =#{we &, : D(w) C S}.
Then

n

a,(S) = .
(5) S bg—1 — bp_2,n — bk1>

(bh b2 - blab3 - b21

The major index maj(w) of a permutation w = ajaz---a, € &, is

defined by
maj(w Z i = Z 1.

11a;>ai+1 1€ D(w)
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For instance, maj(47516823) = 2+ 3 + 6 = 11. Then

Z qinv(w) — Z qmaj(w).

weS, weS,
Extending the previous problem, fix j, k,n. Then
#{w € &, : inv(w) = j, maj(w) = k}
=#{w € G, : inv(w) = k, maj(w) = j}.

A permutation w = ajas - - - a, € S, is alternating if D(w) = {1,3,5,...}N

[n]. In other words,
ar > ay < agz > a4 < Qg > ---.

Let E, denote the number of alternating permutations in &,. Then
EO = E1 =1 and

2B =Y (Z) EvEnp, n> 1. (3)

k=0

Show that "
x
ZE”_ =secz + tanz. (4)
n!
n>0
NOTE. It is not difficult to deduce this result from equation (3), but a
combinatorial proof is wanted. This is quite a bit more difficult. Note
that sec z is an even function of z and tan z is odd, so (4) is equivalent
to

2n

Zme— = secx
(2n)!
n>0
. 2+l B
Z 2n—|—17(2n+1)! = tanz.

n>0

NoTe. We could actually use equation (4) to define tan z and sec x (and
hence the other trigonometric functions in terms of these) combinato-
rially! The next two exercises deal with this subject of “combinatorial
trigonometry.”

10
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Assuming (4), show that

1+ tan®z = sec? .

Assuming (4), show that

tanz + tany

tan(:E + y) = 1— (tan x)(tan y).

Let £ > 2. The number of permutations w € &,, all of whose cycle
lengths are divisible by £ is given by

12-2-3- - (k=1)(k+ 12k +2)---(2k—1)(2k+ 1)*(2k +2) - - - (n — 1).

Let £ > 2. The number of permutations w € &,, none of whose cycle
lengths is divisible by & is given by

1-2---(k—1*k+1)---(2k—2)(2k — 1)*(2k + 1) - - - (n — 1)n,
if kn

12 (k=12 +1)---(2k—2)(2k — 1?2k +1) - - - (n — 2)(n — 1),
if k|n.

The number of pairs (u,v) € &2 such that uv = vu is given by p(n)n!,
where p(n) denotes the number of partitions of 7.

NoOTE (for those familiar with groups). This problem generalizes as
follows. Let G be a finite group. The number of pairs (u,v) € G x G
such that uv = vu is given by k(G)-|G/|, where k(G) denotes the number
of conjugacy classes of G. In this case a bijective proof is unknown (and
probably impossible).

The number of pairs (u,v) € &2 such that u?> = v? is given by p(n)n!
(as in the previous problem).

NOTE. Again there is a generalization to arbitrary finite groups G.
Namely, the number of pairs (u,v) € G x G such that uv = vu is given

by ¢(C) - |G|, where ((G) denotes the number of self-inverse conjugacy
classes K of G, i.e, if w € K then w! € K.

11



67. (*) The number of triples (u,v,w) € & such that u,v, and w are n-
cycles and uvw =1 is equal to 0 if n is even (this part is easy), and to
2(n—1)?/(n+1) if n is odd.

68. (*) Let n be an odd positive integer. The number of ways to write the
n-cycle (1,2,...,n) € &, in the form vvu v ! (u,v € &,) is equal to
2n-nl/(n+1).
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