18.566 PROBLEMS #3
Spring 2003

Beginning with this assignment we will (subjectively) indicate the diffi-
culty level of each problem as follows:

[1] easy
[2] moderately difficult
[3] difficult.

In general, these difficulty ratings are based on the assumption that the
solutions to the previous problems are known.

A partition X\ of n > 0 (denoted A F n or |A\| = n) is an integer se-
quence (A, Ao, ...) satisfying Ay > Xy > --- > 0 and Y \; = n. Trailing
0’s are often ignored, e.g., (4,3,3,1,1) represents the same partition of 12
as (4,3,3,1,1,0,0) or (4,3,3,1,1,0,0,...). The terms A; > 0 are called the
parts of A. The conjugate partition to A, denoted X', has A\; — \;;1 parts equal
to i for all i > 1. The (Young) diagram of X is a left-justified array of squares
with \; squares in the ith row. Notation such as u = (2,3) € A means that
u is the square of the diagram of A in the second row and third column.

69. [1] Let A be a partition. Then

Y i-1A= Z (AQI>
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70. [1] Let A be a partition. Then

Agi1 - —/\IQi—l
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71.

72.

73.

74.

75.

76.

[1] The number of partitions of n with largest part k£ equals the number
of partitions of n with exactly k parts.

[2] Fix k£ > 1. Let A be a partition. Define fi(A) to be the number of
parts of A equal to k, e.g., f3(8,5,5,3,3,3,3,2,1,1) = 4. Define gx())
to be the number of integers ¢ for which A has at least k£ parts equal to
i, e.8., 93(8,8,8,8,6,6,3,2,2,2,1) = 2. Then

ka()\) = ng()\)-

AFn AFn

[2] The number of partitions of n with odd parts equals the number of
partitions of n with distinct parts.

[2] Let o(n) denote the sum of all (positive) divisors of n € P; e.g.,
0(12) =1+4+2+3+4+6+ 12 = 28. Let p(n) denote the number of
partitions of n (with p(0) = 1). Then

n

npn) = 3 o(p(n i)

=1

[2] The number of self-conjugate partitions of n equals the number of
partition of n into distinct odd parts.

[3] Let f(n) be the number of partitions of n into an even number of
parts, all distinct. Let g(n) be the number of partitions of n into an odd
number of parts, all distinct. For instance, f(7) = 3, corresponding to
6+1=5+2=4+3, and ¢g(7) = 2, corresponding to 7 =4 + 2 + 1.
Then

(—=1)%, if n = k(3k £1)/2 for some k € N
0, otherwise.

o) = g0 = {
NoTEe. This result is usually stated in generating function form, viz.,

H(1 _ xn) =1+ Z(_l)k (:L'k(3k_1)/2 + xk(3k+1)/2) :

n>1 k>1

and is known as Fuler’s pentagonal number formula.
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78.

79.

80.

81.

[2] Let f(n) (respectively, g(n)) be the number of partitions A =
(A1, Ag,...) of n into distinct parts, such that the largest part A; is
even (respectively, odd). Then

1, if n=k(3k+1)/2 for some k > 0
f(n)—g(n)=< -1, if n=4k(3k—1)/2 for some k > 1
0, otherwise.

[3] For n € N let f(n) (respectively, g(n)) denote the number of par-
titions of n into distinct parts such that the smallest part is odd and
with an even number (respectively, odd number) of even parts. Then

| 1, ifnis asquare
f(n) —g(n) = { 0, otherwise.

(a) (%) The number of partitions of n into parts = £1 (mod 5) is equal
to the number of partitions of n whose parts differ by at least 2.

(b) (%) The number of partitions of n into parts = +2 (mod 5) is equal
to the number of partitions of n whose parts differ by at least 2
and for which 1 is not a part.

NoTE. This is the combinatorial formulation of the famous Rogers-
Ramanujan identities. One of the known proofs of this result has been
converted into a complicated recursive bijection. What is wanted is a
“direct” bijection whose inverse is easy to describe.

[3] The number of partitions of n into parts = 1, 5, or 6 (mod 8) is
equal to the number of partitions into parts that differ by at least 2,
and such that odd parts differ by at least 4.

[3] A lecture hall partition of length k is a partition A = (Ay,..., Ag)
(some of whose parts may be 0) satisfying
A A1 <M

LN < ... )
1 - 2 = — k

0<

The number of lecture hall partitions of n of length £ is equal to the
number of partitions of n whose parts come from the set {1,3,5,...,2k—
1} (with repetitions allowed).



82.

83.

84.

(*) The Lucas numbers L, are defined by L1 = 1, Ly = 3, L,y =
L,+ L,—; for n > 2. Let f(n) be the number of partitions of n all
of whose parts are Lucas numbers Ly,,; of odd index. For instance,
f(12) = 5, corresponding to

1+1+14+1+14+1+1+1+1+1+1+1
4+14+1+14+1+14+14+1+1
4+4+1+1+1+1

44+4+4

11+1

Let g(n) be the number of partitions A = (A1, Ao, . ..) such that \;/\; 11 >
13+ v/5) whenever \;;; > 0. For instance, g(12) = 5, corresponding
to

12, 1141, 10+2, 9+3, 8+3+1.

Then f(n) = g(n) for all n > 1.

[2.5] Let A(n) denote the number of partitions (A,...,A\x) F n such
that Ay > 0 and

)\i>)\i+1+/\z’+2, 1<i<k-1

(with Ag41 = 0). Let B(n) denote the number of partitions (1, ..., u;) F
n such that

e Each y; is in the sequence 1,2,4, ..., g,,, ... defined by
=1, 9=2, gm = gm-1+ gm-—2 + 1 form > 3.

e If 41y = g, then every element in {1,2,4,..., g, } appears at least
once as a ;.
Then A(n) = B(n) for all n > 1.

Ezxample. A(7) = 5 because the relevant partitions are (7), (6,1),
(5,2), (4,3), (4,2,1), and B(7) =5 because the relevant partitions are
(47 27 1)7 (27 27 27 1)7 (27 27 ]'5 ]'7 1)7 (27 17 17 17 ]" 1)7 (17 17 ]'5 ]'7 ]'7 ]'7 1)'

(x) Let S C P and let p(S,n) denote the number of partitions of n
whose parts belong to S. Let

S = +{1,4,5,6,7,9,10,11,13,15,16,19 (mod40)}
T = =+{1,3,4,5,9,10,11,14,15,16,17,19 (mod40)},
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85.

86.

87.

where

+{a,b,... (modm)} ={n €P : n==a,+£b,... (modm)}.

Then p(S,n) = p(T,n—1) for all n > 1.

NoTe. In principle the known proof of this result and of Problem 85
below can be converted into a complicated recursive bijection, as was
done for Problem 79. Just as for Probem 79, what is wanted is a
“direct” bijection whose inverse is easy to describe. To my knowledge
no one has tried to give a bijective solution to this problem and the

next, so perhaps they are not so difficult.

(*) Let

S = +{1,4,5,6,7,9,11,13,16,21,23,28 (mod 66)}
T = +{1,4,5,6,7,9,11,14,16,17,27,29 (mod 66)}.

Then p(S,n) = p(T,n) for all n > 1 except n =13 (!).

[1.5] Prove the following identities by interpreting the coefficients in

terms of partitions.

H(1+Q$2i_1) —

i>1

[3] Show that

00
Z .ann? —

n=—oo

k k

rq
Z(1—@«)(1—@«2)---(1—3516)

k>0

[[a =)@+ (1 + 27 g%,
k>1

This famous result is Jacobi’s triple product identity.
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88. [3] Let f(n) be the number of partitions of 2n whose Ferrers diagram
can be covered by n edges, each connecting two adjacent dots. For
instance, (4, 3,3,3,1) can be covered as follows:

——o ——o
I
*——o

Then f(n) is equal to the number of ordered pairs (A, u) of partitions
satisfying |\ + |u| = n.

89. (*) Given a partition A and u € A, let a(u) (called the arm length of u)
denote the number of squares directly to the right of u (in the diagram
of A), counting A itself exactly once. Similarly let [(u) (called the leg
length of u) denote the number of squares directly below u, counting u
itelf once. Thus if u = (i, j) then a(u) = \;—j+1 and l(u) = \; —i+1.
Define

y(A) =#{ue X : a(u) —I(u) =0or 1}.

Z N = Z ',

AFn AFn
where £(\) denotes the length (number of parts) of .

Then

90. [2.5] If 0 < k < [n/2], then (}) < (%))

NoTe. To prove an inequality a < b combinatorially, find sets A, B
with #A = a, #B = b, and either an injection (one-to-one map)
f:A— B or a surjection (onto map) g: B — A.

91. [2.5] Let 1 <k <n—1. Then (I)* > (,",)(,",)- Note that this result

is even stronger than Problem 90 above (assuming () = (,",)) [why?].

92. [1] Let p(j,k,n) denote the number of partitions of n with at most j
parts and with largest part at most k. Then p(j, k,n) = p(j, k, jk —n).
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93.

94.

95.

NOTE. A standard result in enumerative combinatorics states that
ik )
; . " j+k
> oG kgt =",
n=0 J

where [T] denotes the g-binomial coefficient:

[m} _ (1—¢™)(1—g™")---(1—gm )
i 1-¢)1—-¢gY)---(1—q)

[3] Continuing the previous problem, if n < jk/2 then p(j,k,n) <
p(j, k,n+1).

NoTe. A (difficult) combinatorial proof is known. What is really
wanted, however, is an injection f : A, — A, .1, where A,, is the set
of partitions counted by p(j, k,m), such that for all A € A,, f(A) is
obtained from A by adding 1 to a single part of A. It is known that
such an injection f exists, but no explicit description of f is known.

[1] Let p(k,n) denote the number of partitions of n into distinct parts,
with largest part at most k. Then

pkm) =gtk (73 1) =

NoTE. It is easy to see that

(39

> pkn)g" =1+ q)(L+¢) - (1+db).

n=0
(*) Continuing the previous problem, if n < %(k'gl) then p(k,n) <
p(k,n+1).
NOTE. As in Problem 93 it would be best to give an injection g :
B, — By1, where By, is the set of partitions counted by p(k, m), such
that for all A\ € B,, f()) is obtained from \ by adding 1 to a single
part of A. It is known that such an injection ¢ exists, but no explicit
description of g is known. However, unlike Problem 93, no explicit
injection ¢ : B, — B,y is known.
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96. [2] A partition m of a set S is a collection of nonempty pairwise disjoint
subsets (called the blocks of 7) of S whose union is S. Let B(n) denote
the number of partitions of an n-element set. B(n) is called a Bell
number. For instance, B(3) = 5, corresponding to the partitions (writ-
ten in an obvious shorthand notation) 1-2-3; 12-3, 13-2, 1-23, 123. The
number of partitions of [n] for which no block contains two consecutive

integers is B(n — 1).
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