18.566 PROBLEMS #4
Spring 2003

A tree T on [n] is a graph with vertex set [n| which is connected and
contains no cycles. Equivalently, as is easy to see, T' is connected and has
n — 1 edges. A forest is a graph for which every connected component is a

tree.

A rooted tree is a tree with a distinguished vertex u, called the root.

If there are t(n) trees on [n| and r(n) rooted trees, then r(n) = nt(n) since
there are n choices for the root u. A planted forest (sometimes called a rooted
forest) is a graph for which every connected component is a rooted tree.

106.

107.
108.

109.

110.

111.

[2.5] The number of trees t(n) on [n] is t(n) = n™ 2. Hence the number

of rooted trees is r(n) = n" 1.

[1] The number of planted forests on [n] is (n + 1)1

[2] Let S C [n], #S = k. The number pg(n) of planted forests on [n]
whose root set is S is given by

ps(n) = kn™ 571,

[2] Given a planted forest F on [n], let deg(i) be the degree (number of
children of 7). E.g., deg(i) = 0 if and only if 7 is a leaf (endpoint) of F.
If F' has k components then it is easy to see that ), deg(i) = n — k.
Given § = (01,...,0,) € N* with Y 0; = n — k, let N(6) denote the
number of planted forests F' on [n] (necessarily with & components)
such that deg(i) = §; for 1 <4 < n. Then

N () = (Z _ 1) ((sn_ k&)

n—k ) denotes a multinomial coefficient.

where (51 5
1y sVn

[2] The number of trees with n + 1 unlabelled vertices and n labelled
edges is (n+ 1)"72.

[2.5] A k-edge colored tree is a tree whose edges are colored from a
set of k£ colors such that any two edges with a common vertex have
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different colors. Show that the number Ty (n) of k-edge colored trees
on the vertex set [n] is given by

Ti(n) = k(nk —n)(nk—n—1)---(nk —2n+3) = k(n— 2)!<n:__2n>.

(This problem has received little attention and may be easy.)

112. A binary tree is a rooted tree such that every vertex v has exactly
two subtrees L,, R,, possibly empty, and the set {L,, R,} is linearly
ordered, say as (L,, R,). We call L, the left subtree of v and draw it to
the left of v. Similarly R, is called the right subtree of v, etc. A binary
tree on the vertex set [n] is increasing if each vertex is smaller that its
children. An example of such a tree is given by:

(a) [1] The number of increasing binary trees on [n] is n!.

(b) [2] The number of increasing binary trees on [n| for which exactly
k vertices have a left child is the Eulerian number A(n,k + 1).

113. An increasing forest is a planted forest on [n] such that every vertex is
smaller than its children.
(a) [1] The number of increasing forests on [n] is n!.

(b) [2] The number of increasing forests on [n] with exactly & com-
ponents is equal to the number of permutations w € &,, with k
cycles.

(c) [2] The number of increasing forests on [n| with exactly k£ end-
points is the Eulerian number A(n, k).
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114. [2] Show that

2}n+Uf§=(§)ﬂg>(XNH4W*%)-

n>0

115. [2] Show that

116. [3] Let 7 be a rooted tree with vertex set [n] and root 1. An inversion
of T is a pair (4, 7) such that 1 < i < j and the unique path in 7 from
1 to 7 passes through j. For instance, the tree below has the inversions
(3,4),(2,4),(2,6), and (5,6).

Let inv(7) denote the number of inversions of 7. Define

L(t) =y ™,

T

summed over all n® 2 trees on [n] with root 1. For instance,

L(t) = 1

L(t) = 1

L(t) = 2+t

L(t) = 6+6t+3t"+1¢

Is(t) = 24+ 36t + 30> 4 20> + 10t* + 4¢° + 15

Is(t) = 1204 240t + 270t + 240> + 180t* + 120t° + 70t° + 35¢7

+15¢8 + 5¢° + ¢19.
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118.

119.

Show that
L (L) = ),
G

summed over all connected graphs G (without loops or multiple edges)
on the vertex set [n], where e(G) is the number of edges of G.

(*) An alternating tree on [n + 1] is a tree with vertex set [n 4 1] such
that every vertex is either less than all its neighbors or greater than
all its neighbors. Let f(n) denote the number of alternating trees on

[n+1],s0 f(1) =1, f(2) =2, f(3) =17, f(4) = 36, etc. Then

n

s =5 3 ()0

k=0

[2.5] A local binary search tree is a binary tree, say with vertex set [n],
such that the left child of a vertex is smaller than its parent, and the
right child of a vertex is larger than its parent. An example of such a
tree is:

1 3

The number f(n) of alternating trees on [n] is equal to the number of
local binary search trees on [n + 1].

(*) A tournament is a directed graph with no loops (edges from a
vertex to itself) and with exactly one edge u — v or v — u between
any two distinct vertices u,v. Thus the number of tournaments on
[n] (i.e., with vertex set [n]) is 2(5). Write C = (c1,co,...,c) for the
directed cycle with edges ¢; — ¢ — --- — ¢ — ¢; in a tournament
on [n]. Let asc(C) be the number of integers 1 < ¢ < k for which
ci-1 < ¢, and let des(C) be the number of integers 1 < i < k for
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120.

121.

which ¢;_; > ¢;, where by convention ¢y = c,. We say that the cycle
C' is ascending if asc(C) > des(C). For example, the cycles (a,b,c),
(a,c,b,d), (a,b,d,c), and (a, c,d, b) are ascending, where a < b < ¢ < d.
A tournament T on [n] is semiacyclic if it contains no ascending cycles,
i.e, if for any directed cycle C' in T we have asc(C) < des(C). The
number of semiacyclic tournaments on [n] is equal to the number of
alternating trees on [n]. (This problem, usually stated in a different
but equivalent form, has received a lot of attention. A solution would
be well worth publishing.)

[2] An edge-labelled alternating tree is a tree, say with n + 1 vertices,
whose edges are labelled 1,2,...,n such that no path contains three
consecutive edges whose labels are increasing. (The vertices are not
labelled.) If n > 1, then the number of such trees is n!/2.

[2.5] A recursively labelled tree is a rooted tree on the vertex set [n],
such every subtree (i.e., every vertex and its descendants) consists of
consecutive integers. An example is:

Similarly define a recursively labelled forest. Let t, (respectively, f,)
denote the number of recursively labelled trees (respectively, forests)
on the vertex set [n]. Then %, is the number of ordered pairs of ternary
trees with a total of n—1 vertices. (A ternary tree is a rooted unlabelled
tree such that every vertex has three subtrees, which may be empty,
and these subtrees are linearly ordered.) Similary f, is the number of
ternary trees with n vertices.
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123.

124.

125.

126.

NoTE. It is known that

y _1 3n—2 £ = 1 3n
" np\n—-1) """ oam+1\n)’

though these formulas are not relevant to finding a bijective proof.

[2] A tree on a linearly ordered vertex set is called noncrossing if ik
and jl are not both edges whenever i < 7 < k < [. The number of
noncrossing trees on [n] is equal to the number of ternary trees with
n — 1 vertices.

[2] A spanning tree of a graph G is a subgraph of G which is a tree
and which uses every vertex of G. The number of spanning trees of G
is denoted ¢(G) and is called the complezity of G. Thus Problem 106
is equivalent to the statement that c(K,) = n" 2, where K, is the
complete graph on n vertices (one edge between every two distinct
vertices). The complete bipartite graph K, has vertex set A U B,
where #A = m and #B = n, with an edge between every vertex of A

and every vertex of B (so mn edges in all). Then ¢(K,,,) = m"~'n™!.

(*) The n-cube C, (as a graph) is the graph with vertex set {0,1}"
(i.e., all binary n-tuples), with an edge between u and v if they differ
in exactly one coordinate. Thus C, has 2" vertices and n2" ! edges.
Then

c(C,) = 22" ﬁ 10}

[2.5] A parking function of length n is a sequence (a4, ..., a,) € P" such
that its increasing rearrangement by < by < --- < b, satisfies b; < 1.
The parking functions of length three are 111, 112, 121, 211, 122, 212,
221,113, 131, 311, 123, 132, 213, 231, 312, 321. The number of parking
functions of length n is (n + 1)"7L.

[3] Let PF(n) denote the set of parking functions of length n. Then

Z qa1+...+an _ Zq(";‘l)—inv(ﬂ’
T

(a1,...,an)EPF(n)

where 7 ranges over trees on [n + 1] with root 1, and where inv(7) is
defined in Problem 116.
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127.

128.

[2.5] A walid n-pair consists of a permutation w = a;---a, € &,,
together with a collection I of pairs (4, j) such that

o If (4,j) e [ then 1 <i<j<n.
o If (¢,7) € I then a; < a;.
o If (4,5),(#,j) € I and {i,i+1,...,5} C {i,7 +1,...,7), then

6.3y 2 7).

For example, let n = 3. For each w € &3 we put after it the number of
sets I for which (w, ) is a valid 3-pair: 123 (5), 213 (3), 132 (3), 231
(2), 312 (2), 321 (1). The number of valid n-pairs is (n + 1)"!

(a) [3] Let T be a tournament on [n], as defined in Problem 119. The
outdegree of vertex i, denoted outdeg(7), is the number of edges
pointing out of 7, i.e., edges of the form ¢ — j. The outdegree
sequence of T is defined by

out(7) = (outdeg(1),..., outdeg(n)).

For instance, there are eight tournaments on [3], but two have
outdegree sequence (1,1, 1). The other six have distinct outdegree
sequences, so the total number of distinct outdegree sequences of
tournaments on [3] is 7. The total number of distinct outdegree
sequences of tournaments on [n] is equal to the number of forests
on [n].

(b) [3] More generally, let G be an (undirected) graph on [n]. An ori-
entation o of GG is an assignment of a direction © — v or v — u to
each edge uv of G. The outdegree sequence of o is defined analo-
gously to that of tournaments. The number of distinct outdegree
sequences of orientations of G is equal to the number of spanning
forests of G.

129. (*) Let G be a graph on [n]. The degree of vertex i, denoted deg(i),

is the number of edges incident to i. The (ordered) degree sequence of
G is the sequence (deg(1),...,deg(n)). The number f(n) of distinct
degree sequences of simple (i.e., no loops or multiple edges) graphs on

[n] is given by
= Z max{1, 24@-1}
Q
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130.

131.

where ) ranges over all graphs on [n] for which every connected com-
ponent is either a tree or has exactly one cycle, which is of odd length.
Moreover, d(Q) denotes the number of (odd) cycles in Q.

[3] The number of ways to write the cycle (1,2,...,n) € &, as a
product of n — 1 transpositions (the minimum possible) is n" 2. (A
transposition is a permutation w € &, with one cycle of length two
and n — 2 fixed points.) For instance, the three ways to write (1,2, 3)
are (multiplying right-to-left) (1, 2)(2, 3), (2,3)(1,3), and (1, 3)(1, 2).
NoTE. It is not difficult to show bijectively that the number of ways to
write some n-cycle as a product of n— 1 transpositions is (n —1)! n"=2,
from which the above result follows by “symmetry.” However, a direct
bijection between factorizations of a fized n-cycle such as (1,2,...,n)
and labelled trees (say) is considerably more difficult.

[3.5] Let A = (A1, Ag,..., Ar) be a partition of n with A\, > 0, and let
w be a permutation of 1,2,... n whose cycles have lengths A, ..., A
Let f(A) be the number of ways to write w = t;ty---t; where the
t;’s are transpositions that generate all of G,,, and where k is minimal
with respect to the condition on the t;’s. (It is not hard to see that
k =mn+ £ —2.) Show that

1

A;\i+
;!

fA)=(n+e-2)n'3 H

NoTe. Suppose that t; = (a;,b;). Let G be the graph on [n| with
edges a;b;, 1 <1 < k. Then the statement that the ¢;’s generate G,, is
equivalent to the statement that G is connected.
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