18.S66 PROBLEMS #4

Spring 2003

A tree T on [n] is a graph with vertex set [n] which is connected and contains no cycles. Equivalently, as is easy to see, T is connected and has n-1 edges. A forest is a graph for which every connected component is a tree. A rooted tree is a tree with a distinguished vertex u, called the root. If there are t(n) trees on [n] and r(n) rooted trees, then r(n) = nt(n) since there are n choices for the root u. A planted forest (sometimes called a rooted forest) is a graph for which every connected component is a rooted tree.

- 106. [2.5] The number of trees t(n) on [n] is $t(n) = n^{n-2}$. Hence the number of rooted trees is $r(n) = n^{n-1}$.
- 107. [1] The number of planted forests on [n] is $(n+1)^{n-1}$.
- 108. [2] Let $S \subseteq [n]$, #S = k. The number $p_S(n)$ of planted forests on [n] whose root set is S is given by

$$p_S(n) = k n^{n-k-1}.$$

109. [2] Given a planted forest F on [n], let $\deg(i)$ be the *degree* (number of children of i). E.g., $\deg(i) = 0$ if and only if i is a leaf (endpoint) of F. If F has k components then it is easy to see that $\sum_i \deg(i) = n - k$. Given $\delta = (\delta_1, \ldots, \delta_n) \in \mathbb{N}^n$ with $\sum \delta_i = n - k$, let $N(\delta)$ denote the number of planted forests F on [n] (necessarily with k components) such that $\deg(i) = \delta_i$ for $1 \leq i \leq n$. Then

$$N(\delta) = \binom{n-1}{k-1} \binom{n-k}{\delta_1, \dots, \delta_n},$$

where $\binom{n-k}{\delta_1,\ldots,\delta_n}$ denotes a multinomial coefficient.

- 110. [2] The number of trees with n+1 unlabelled vertices and n labelled edges is $(n+1)^{n-2}$.
- 111. [2.5] A k-edge colored tree is a tree whose edges are colored from a set of k colors such that any two edges with a common vertex have

different colors. Show that the number $T_k(n)$ of k-edge colored trees on the vertex set [n] is given by

$$T_k(n) = k(nk-n)(nk-n-1)\cdots(nk-2n+3) = k(n-2)!\binom{nk-n}{n-2}.$$

(This problem has received little attention and may be easy.)

112. A binary tree is a rooted tree such that every vertex v has exactly two subtrees L_v , R_v , possibly empty, and the set $\{L_v, R_v\}$ is linearly ordered, say as (L_v, R_v) . We call L_v the left subtree of v and draw it to the left of v. Similarly R_v is called the right subtree of v, etc. A binary tree on the vertex set [n] is increasing if each vertex is smaller that its children. An example of such a tree is given by:

- (a) [1] The number of increasing binary trees on [n] is n!.
- (b) [2] The number of increasing binary trees on [n] for which exactly k vertices have a left child is the Eulerian number A(n, k+1).
- 113. An increasing forest is a planted forest on [n] such that every vertex is smaller than its children.
 - (a) [1] The number of increasing forests on [n] is n!.
 - (b) [2] The number of increasing forests on [n] with exactly k components is equal to the number of permutations $w \in \mathfrak{S}_n$ with k cycles.
 - (c) [2] The number of increasing forests on [n] with exactly k endpoints is the Eulerian number A(n, k).

114. [2] Show that

$$\sum_{n\geq 0} (n+1)^n \frac{x^n}{n!} = \left(\sum_{n\geq 0} n^n \frac{x^n}{n!}\right) \left(\sum_{n\geq 0} (n+1)^{n-1} \frac{x^n}{n!}\right).$$

115. [2] Show that

$$\frac{1}{1 - \sum_{n \ge 1} n^{n-1} \frac{x^n}{n!}} = \sum_{n \ge 0} n^n \frac{x^n}{n!}.$$

116. [3] Let τ be a rooted tree with vertex set [n] and root 1. An inversion of τ is a pair (i,j) such that 1 < i < j and the unique path in τ from 1 to i passes through j. For instance, the tree below has the inversions (3,4),(2,4),(2,6), and (5,6).

Let inv(τ) denote the number of inversions of τ . Define

$$I_n(t) = \sum_{\tau} t^{\mathrm{inv}(\tau)},$$

summed over all n^{n-2} trees on [n] with root 1. For instance,

$$I_1(t) = 1$$

$$I_2(t) = 1$$

$$I_3(t) = 2 + t$$

$$I_4(t) = 6 + 6t + 3t^2 + t^3$$

$$I_5(t) = 24 + 36t + 30t^2 + 20t^3 + 10t^4 + 4t^5 + t^6$$

$$I_6(t) = 120 + 240t + 270t^2 + 240t^3 + 180t^4 + 120t^5 + 70t^6 + 35t^7 + 15t^8 + 5t^9 + t^{10}.$$

Show that

$$t^{n-1}I_n(1+t) = \sum_G t^{e(G)},$$

summed over all connected graphs G (without loops or multiple edges) on the vertex set [n], where e(G) is the number of edges of G.

117. (*) An alternating tree on [n+1] is a tree with vertex set [n+1] such that every vertex is either less than all its neighbors or greater than all its neighbors. Let f(n) denote the number of alternating trees on [n+1], so f(1)=1, f(2)=2, f(3)=7, f(4)=36, etc. Then

$$f(n) = \frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} (k+1)^{n-1}.$$

118. [2.5] A local binary search tree is a binary tree, say with vertex set [n], such that the left child of a vertex is smaller than its parent, and the right child of a vertex is larger than its parent. An example of such a tree is:

The number f(n) of alternating trees on [n] is equal to the number of local binary search trees on [n+1].

119. (*) A tournament is a directed graph with no loops (edges from a vertex to itself) and with exactly one edge $u \to v$ or $v \to u$ between any two distinct vertices u, v. Thus the number of tournaments on [n] (i.e., with vertex set [n]) is $2^{\binom{n}{2}}$. Write $C = (c_1, c_2, \ldots, c_k)$ for the directed cycle with edges $c_1 \to c_2 \to \cdots \to c_k \to c_1$ in a tournament on [n]. Let $\operatorname{asc}(C)$ be the number of integers $1 \le i \le k$ for which $c_{i-1} < c_i$, and let $\operatorname{des}(C)$ be the number of integers $1 \le i \le k$ for

which $c_{i-1} > c_i$, where by convention $c_0 = c_k$. We say that the cycle C is ascending if $\operatorname{asc}(C) \ge \operatorname{des}(C)$. For example, the cycles (a, b, c), (a, c, b, d), (a, b, d, c), and (a, c, d, b) are ascending, where a < b < c < d. A tournament T on [n] is semiacyclic if it contains no ascending cycles, i.e, if for any directed cycle C in T we have $\operatorname{asc}(C) < \operatorname{des}(C)$. The number of semiacyclic tournaments on [n] is equal to the number of alternating trees on [n]. (This problem, usually stated in a different but equivalent form, has received a lot of attention. A solution would be well worth publishing.)

- 120. [2] An edge-labelled alternating tree is a tree, say with n+1 vertices, whose edges are labelled $1, 2, \ldots, n$ such that no path contains three consecutive edges whose labels are increasing. (The vertices are not labelled.) If n > 1, then the number of such trees is n!/2.
- 121. [2.5] A recursively labelled tree is a rooted tree on the vertex set [n], such every subtree (i.e., every vertex and its descendants) consists of consecutive integers. An example is:

Similarly define a recursively labelled forest. Let t_n (respectively, f_n) denote the number of recursively labelled trees (respectively, forests) on the vertex set [n]. Then t_n is the number of ordered pairs of ternary trees with a total of n-1 vertices. (A ternary tree is a rooted unlabelled tree such that every vertex has three subtrees, which may be empty, and these subtrees are linearly ordered.) Similary f_n is the number of ternary trees with n vertices.

NOTE. It is known that

$$t_n = \frac{1}{n} \binom{3n-2}{n-1}, \quad f_n = \frac{1}{2n+1} \binom{3n}{n},$$

though these formulas are not relevant to finding a bijective proof.

- 122. [2] A tree on a linearly ordered vertex set is called noncrossing if ik and jl are not both edges whenever i < j < k < l. The number of noncrossing trees on [n] is equal to the number of ternary trees with n-1 vertices.
- 123. [2] A spanning tree of a graph G is a subgraph of G which is a tree and which uses every vertex of G. The number of spanning trees of G is denoted c(G) and is called the complexity of G. Thus Problem 106 is equivalent to the statement that $c(K_n) = n^{n-2}$, where K_n is the complete graph on n vertices (one edge between every two distinct vertices). The complete bipartite graph K_{mn} has vertex set $A \cup B$, where #A = m and #B = n, with an edge between every vertex of A and every vertex of B (so mn edges in all). Then $c(K_{mn}) = m^{n-1}n^{m-1}$.
- 124. (*) The n-cube C_n (as a graph) is the graph with vertex set $\{0,1\}^n$ (i.e., all binary n-tuples), with an edge between u and v if they differ in exactly one coordinate. Thus C_n has 2^n vertices and $n2^{n-1}$ edges. Then

$$c(C_n) = 2^{2^n - n - 1} \prod_{k=1}^n k^{\binom{n}{k}}.$$

- 125. [2.5] A parking function of length n is a sequence $(a_1, \ldots, a_n) \in \mathbb{P}^n$ such that its increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies $b_i \leq i$. The parking functions of length three are 111, 112, 121, 211, 122, 212, 221, 113, 131, 311, 123, 132, 213, 231, 312, 321. The number of parking functions of length n is $(n+1)^{n-1}$.
- 126. [3] Let PF(n) denote the set of parking functions of length n. Then

$$\sum_{(a_1,\ldots,a_n)\in \mathrm{PF}(n)} q^{a_1+\cdots+a_n} = \sum_{\tau} q^{\binom{n+1}{2}-\mathrm{inv}(\tau)},$$

where τ ranges over trees on [n+1] with root 1, and where inv (τ) is defined in Problem 116.

- 127. [2.5] A valid n-pair consists of a permutation $w = a_1 \cdots a_n \in \mathfrak{S}_n$, together with a collection I of pairs (i,j) such that
 - If $(i, j) \in I$ then $1 \le i < j \le n$.
 - If $(i, j) \in I$ then $a_i < a_j$.
 - If $(i, j), (i', j') \in I$ and $\{i, i + 1, ..., j\} \subseteq \{i', i' + 1, ..., j'\}$, then (i, j) = (i', j').

For example, let n = 3. For each $w \in \mathfrak{S}_3$ we put after it the number of sets I for which (w, I) is a valid 3-pair: 123 (5), 213 (3), 132 (3), 231 (2), 312 (2), 321 (1). The number of valid n-pairs is $(n + 1)^{n-1}$.

128. (a) [3] Let T be a tournament on [n], as defined in Problem 119. The outdegree of vertex i, denoted outdeg(i), is the number of edges pointing out of i, i.e., edges of the form $i \to j$. The outdegree sequence of T is defined by

$$\operatorname{out}(T) = (\operatorname{outdeg}(1), \dots, \operatorname{outdeg}(n)).$$

For instance, there are eight tournaments on [3], but two have outdegree sequence (1, 1, 1). The other six have distinct outdegree sequences, so the total number of distinct outdegree sequences of tournaments on [3] is 7. The total number of distinct outdegree sequences of tournaments on [n] is equal to the number of forests on [n].

- (b) [3] More generally, let G be an (undirected) graph on [n]. An orientation \mathfrak{o} of G is an assignment of a direction $u \to v$ or $v \to u$ to each edge uv of G. The outdegree sequence of \mathfrak{o} is defined analogously to that of tournaments. The number of distinct outdegree sequences of orientations of G is equal to the number of spanning forests of G.
- 129. (*) Let G be a graph on [n]. The degree of vertex i, denoted $\deg(i)$, is the number of edges incident to i. The (ordered) degree sequence of G is the sequence $(\deg(1), \ldots, \deg(n))$. The number f(n) of distinct degree sequences of simple (i.e., no loops or multiple edges) graphs on [n] is given by

$$f(n) = \sum_{Q} \max\{1, 2^{d(Q)-1}\},\,$$

where Q ranges over all graphs on [n] for which every connected component is either a tree or has exactly one cycle, which is of odd length. Moreover, d(Q) denotes the number of (odd) cycles in Q.

130. [3] The number of ways to write the cycle $(1, 2, ..., n) \in \mathfrak{S}_n$ as a product of n-1 transpositions (the minimum possible) is n^{n-2} . (A transposition is a permutation $w \in \mathfrak{S}_n$ with one cycle of length two and n-2 fixed points.) For instance, the three ways to write (1,2,3) are (multiplying right-to-left) (1,2)(2,3), (2,3)(1,3), and (1,3)(1,2).

NOTE. It is not difficult to show bijectively that the number of ways to write *some* n-cycle as a product of n-1 transpositions is $(n-1)! n^{n-2}$, from which the above result follows by "symmetry." However, a direct bijection between factorizations of a fixed n-cycle such as (1, 2, ..., n) and labelled trees (say) is considerably more difficult.

131. [3.5] Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$ be a partition of n with $\lambda_\ell > 0$, and let w be a permutation of $1, 2, \dots, n$ whose cycles have lengths $\lambda_1, \dots, \lambda_\ell$. Let $f(\lambda)$ be the number of ways to write $w = t_1 t_2 \cdots t_k$ where the t_i 's are transpositions that generate all of \mathfrak{S}_n , and where k is minimal with respect to the condition on the t_i 's. (It is not hard to see that $k = n + \ell - 2$.) Show that

$$f(\lambda) = (n + \ell - 2)! n^{\ell - 3} \prod_{i=1}^{\ell} \frac{\lambda_i^{\lambda_i + 1}}{\lambda_i!}.$$

NOTE. Suppose that $t_i = (a_i, b_i)$. Let G be the graph on [n] with edges $a_i b_i$, $1 \le i \le k$. Then the statement that the t_i 's generate \mathfrak{S}_n is equivalent to the statement that G is connected.