18.566 PROBLEMS #5
Spring 2003

Let us define the nth Catalan number C,, by

1 2n
— > 0.
C, n+1(n)’ n>0 (5)

Thus (Co, C4,...) = (1,1,2,5,14,42,132,429,...). There are a huge number
of combinatorial interpretations of these numbers; 66 appear in Exercise 6.19
of R. Stanley, Enumerative Combinatorics, vol. 2. This exercise (as well as
some related ones) is available at www-math.mit.edu/~rstan/ec, and an ad-
dendum with many more interpretations may be found at the same website.
We give here a subset of these interpretations that are the most fundamental
or most interesting. Problem 143 is perhaps the easiest one to show bijec-
tively is counted by (5). All your other proofs should be bijections with
previously shown “Catalan sets.” Each interpretation is illustrated by the
case n = 3, which hopefully will make any undefined terms clear. Needless
to say, you should not hand in a problem whose solution you have obtained
from an outside source (except reasonable collaboration with other students
in the course).

132. [1.5] triangulations of a convex (n + 2)-gon into n triangles by n — 1
diagonals that do not intersect in their interiors

IR IR IR I

133. [1.5] binary parenthesizations of a string of n + 1 letters

134. binary trees with n vertices

R
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135.

136.

137.

138.

[1.5] plane binary trees with 2n + 1 vertices (or n + 1 endpoints) (A
plane binary tree is a binary tree for which every vertex is either an
endpoint or has two children.)

ARt

2] plane trees with n+1 vertices (A plane tree is a rooted tree for which
the subtrees of every vertex are hnearly ordered from left to right.)

A S

[1.5] lattice paths from (0,0) to (n,n) with steps (0, 1) or (1,0), never
rising above the line y = x

NI

[1] Dyck paths from (0,0) to (2n,0), i.e., lattice paths with steps (1, 1)
and (1, —1), never falling below the z-axis

NN A AN A

139.

[2.5] (unordered) pairs of lattice paths with n + 1 steps each, starting
at (0,0), using steps (1,0) or (0, 1), ending at the same point, and only
intersecting at the beginning and end
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140.

141.

142.

143.

144.

145.

146.

[1.5] n nonintersecting chords joining 2n points on the circumference
of a circle

2] ways of drawing in the plane n + 1 points lying on a horizontal line
L and n arcs connecting them such that («) the arcs do not pass below
L, () the graph thus formed is a tree, () no two arcs intersect in their

interiors (i.e., the arcs are noncrossing), and (§) at every vertex, all the
arcs exit in the same direction (left or right)

AN AN LN SN A

[2.5] ways of drawing in the plane n + 1 points lying on a horizontal
line L and n arcs connecting them such that («) the arcs do not pass
below L, () the graph thus formed is a tree, () no arc (including its
endpoints) lies strictly below another arc, and (0) at every vertex, all
the arcs exit in the same direction (left or right)

A0\ AN DN s LA

[1] sequences of n 1’s and n —1’s such that every partial sum is non-
negative (with —1 denoted simply as — below)

111—— 11-1— 11——1— 1-11— 1-1-1—-
[1] sequences 1 < a; < --- < a, of integers with a; < i
111 112 113 122 123
2] sequences ay, asg, . .., a, of integers such that a; =0 and 0 < a;1; <
a; + 1
000 001 010 011 012
[1.5] sequences ay,as,...,a,—1 of integers such that a; < 1 and all

partial sums are nonnegative

0,0 0,1 1,-1 1,0 1,1
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147.

148.

149.

150.

151.

152.

153.

[1.5] sequences ay, as, ... ,a, of integers such that a; > —1, all partial
sums are nonnegative, and a; +as + --- +a, =0

0,00 01,-1 1,0,—1 1,-1,0 2,—1,—1

[1.5] Sequences of n — 1 1’s and any number of —1’s such that every
partial sum is nonnegative

L1 1,1,-1  1,-1,1 1,1,-1,-1  1,-1,1,—1

[2.5] Sequences ajas - - - a, of nonnegative integers such that a; = #{i :
i<j,a<ajforl1<j<n

000 002 010 011 012
2.5] Pairs («

such that oo >
for all 7)

() of compositions of n with the same number of parts,
0 (dominance order, i.e., a3 +---+a; > By + -+ + 0

(111,111) (12,12) (21,21) (21,12) (3,3)

2] permutations ajas - - - a, of the multiset {12,22 ... ,n?} such that:
(i) the first occurrences of 1,2,...,n appear in increasing order, and
(ii) there is no subsequence of the form afaf

112233 112332 122331 123321 122133

[2.5] permutations ajas - - - a,, of [n] with longest decreasing subsequence
of length at most two (i.e., there does not exist i < j < k, a; > a; > ay),
called 321-avoiding permutations

123 213 132 312 231

2] permutations ajas - - - a, of [n] for which there does not exist i <
Jj < kand a; < ay < a; (called 312-avoiding permutations)

123 132 213 231 321
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154.

155.

156.

157.

158.

2] permutations w of [2n| with n cycles of length two, such that the
product (1,2,...,2n) - w has n + 1 cycles

(1,2,3,4,5,6)(1,2)(3,4)(5,6) = (1)(2,4,6)(3)(5)
(1,2,3,4,5,6)(1,2)(3,6)(4,5) (1)(2,6)(3,5)(4)
(1,2,3,4,5,6)(1,4)(2,3)(5,6) (1,3)(2)(4,6)(5)
(1,2,3,4,5,6)(1,6)(2,3)(4,5) (1,3,5)(2)(4)(6)
(1,2,3,4,5,6)(1,6)(2,5)(3,4) = (1,5)(2,4)(3)(6)

[2.5] pairs (u,v) of permutations of [n] such that u and v have a total
of n+ 1 cycles, and uv = (1,2,...,n)

MER)B)-(1,2,3)  (1,2,3)-(H(2)3)  (1,2)(3)-(1,3)(2)
(1,3)(2) - (1(2,3)  (1)(2,3)-(1,2)(3)

2] noncrossing partitions of [n], i.e., partitions of [n] such that if a,c
appear in a block B and b, d appear in a block B’, where a < b < ¢ < d,
then B = B’

123 12-3  13-2 23-1 1-2-3
(The unique partition of [4] that isn’t noncrossing is 13—24.)

2.5] noncrossing partitions of [2n + 1] into n + 1 blocks, such that no
block contains two consecutive integers

137-46—2—-5 1357-2-4-6 157-24-3-6 17-246-3-5 17-26-354

2.5] nonnesting partitions of [n], i.e., partitions of [n] such that if a,e
appear in a block B and b,d appear in a different block B’ where
a < b<d< e, then there is a ¢ € B satisfying b < ¢ < d

123 123 13-2 23-1 1-2-3

(The unique partition of [4] that isn’t nonnesting is 14—23.)
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159.

160.

161.

162.

163.

164.

[2.5] nonisomorphic n-element posets (i.e., partially ordered sets) with
no induced subposet isomorphic to 2+ 2 or 3+ 1, where a-+ b denotes
the disjoint union of an a-element chain and a b-element chain

2] relations R on [n] that are reflexive (iRi), symmetric (iRj = jRi),
and such that if 1 <1i < j < k <n and iRk, then iRj and jRk (in the
example below we write ¢j for the pair (4, 7), and we omit the pairs 77)

0 {12,21} {23,32} {12,21,23,32} {12,21,13,31,23,32}

[1.5] ways to stack coins in the plane, the bottom row consisting of n
consecutive coins

O
OO0 QQQO QQQO QQQQO QQOQO
[2.5] n-tuples (ay, as, . .., a,) of integers a; > 2 such that in the sequence

laias - - - a,1, each a; divides the sum of its two neighbors

14321 13521 13231 12531 12341

[3] n-element subsets S of N x N such that if (i,7) € S then ¢ > j and
there is a lattice path from (0,0) to (7, j) with steps (0,1), (1,0), and
(1,1) that lies entirely inside S

{(0,0),(1,0),(2,0)}  {(0,0),(1,0),(1, 1)} {(0,0),(1,0),(2,1)}
{(0,0),(1,1),(2, 1)} {(0,0),(1,1),(2,2)}

[3] positive integer sequences ay,as, . . ., Gn1o for which there exists an
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Figure 1: The frieze pattern corresponding to the sequence (1, 3,2,1,5,1,2, 3)

integer array (necessarily with n + 1 rows)

1 1 1 S 1 1 1 e 1
ay %) as T An+4-2 ay %) s
b b by = busz by s by
1 T2 T3 T Tn+2 1
1 1 1 1
(6)

such that any four neighboring entries in the configuration sZt sat-

isfy st = ru 4+ 1 (an example of such an array for (ai,...,as) =
(1,3,2,1,5,1,2,3) (necessarily unique) is given by Figure 1):

12213 22131 21312 13122 31221

165. [3] n-tuples (ay,...a,) of positive integers such that the tridiagonal

matrix ~ .
aq 1 0 0 - - - 0 0
1 ao 1 0 - - - 0 0
0 1 a3 1 - - - 0 0
0O 0 0 0 - Ap—1 1
| 0 0 0 0 1 an |




166.

167.

168.

169.

is positive definite with determinant one

NOTE. A real matrix A is positive definite if it is symmetric and every
eigenvalue is positive; equivalently, A is symmetric and every leading
principal minor is positive. A leading principal minor is the determi-
nant of a square submatrix that fits into the upper left-hand corner of

A.
131 122 221 213 312

2] Vertices of height n—1 of the tree T" defined by the property that the
root has degree 2, and if the vertex x has degree k, then the children
of x have degrees 2,3,.... k+1

[2.5] Subsets S of N such that 0 € S and such that if i € S then
t+ni1+n+1eS

N, N—{1}, N-{2}, N—{1,2}, N—{1,2,5}

2] Ways to write (1,1,...,1,—n) € Z"" as a sum of vectors e; —
ei+1 and e; — e,41, without regard to order, where e is the kth unit
coordinate vector in Z"t!:

(1,—1,0,0) +2(0,1,—1,0) + 3(0,0, 1, —1)
(1,0,0,—1) + (0,1, —1,0) + 2(0,0, 1, —1)
(1,—1,0,0) + (0,1, —1,0) + (0,1,0,—1) + 2(0,0,1, —1)
(1,—1,0,0) +2(0,1,0,—1) + (0,0, 1, —1)
(1,0,0,—1) + (0,1,0,—1) + (0,0, 1, —1)

[1.5] tilings of the staircase shape (n,n — 1,...,1) with n rectangles
such that each rectangle contains a square at the end of some row
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170.

2] n x n N-matrices M = (m;;) where m;; = 0 unless i =n or ¢ = j or
i =j — 1, with row and column sum vector (1,2,...,n)

1 00 010 1 00 1 00 010

0 20 01 1 011 0 0 2 00 2

0 0 3 1 0 2 01 2 0 21 1 11

This concludes the list of objects counted by Catalan numbers. A few
more problems related to Catalan numbers are the following.

171.

172.

173.

(*) We have
Y CarCappy = 4"C.

k=0

(*) An intriguing variation of Problem 170 above is the following. A
bijective proof would be of great interest. Let g(n) denote the number
of n x n N-matrices M = (m;;) where m;; = 0 if i > j + 1, with row
and column sum vector (1, 3,6,..., (”;1)) For instance, when n = 2
there are the two matrices

10 0 1
0 3 1 2|
Then g(n) = C1Cy -+ - C,.

2] (compare with Problem 168) Let f(n) be the number of ways to

write the vector
1
(1,2,3,...,71,—(”; )) e 7+

as a sum of vectors ¢; —ej, 1 < i < j < n + 1, without regard to
order, where e is the kth unit coordinate vector in Z"*!. For in-
stance, when n = 2 there are the two ways (1,2,-3) = (1,0,—1) +
2(0,1,—1) = (1,—1,0) + 3(0,1,—1). Assuming Problem 172, show
that f(n) = Clcz cee Cn
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174. [2.5] The Narayana numbers N(n,k) are defined by

-0

Let X, be the set of all sequences w = wyws - --wy, of n 1’s and n
—1’s with all partial sums nonnegative, such that

k= #{] LWy = 1,wj+1 = —1}

Show that N(n,k) = #X,,. Hence by Problem 143, there follows

i N(n, k) = C,.
k=1

One therefore says that the Narayana numbers are a refinement of
the Catalan numbers. There are many other interesting refinements of
Catalan numbers, but we won’t consider them here.
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