
18.S66 PROBLEMS #5

Spring 2003

Let us define the nth Catalan number Cn by

Cn =
1

n + 1

(

2n

n

)

, n ≥ 0. (5)

Thus (C0, C1, . . .) = (1, 1, 2, 5, 14, 42, 132, 429, . . .). There are a huge number
of combinatorial interpretations of these numbers; 66 appear in Exercise 6.19
of R. Stanley, Enumerative Combinatorics, vol. 2. This exercise (as well as
some related ones) is available at www-math.mit.edu/∼rstan/ec, and an ad-
dendum with many more interpretations may be found at the same website.
We give here a subset of these interpretations that are the most fundamental
or most interesting. Problem 143 is perhaps the easiest one to show bijec-
tively is counted by (5). All your other proofs should be bijections with
previously shown “Catalan sets.” Each interpretation is illustrated by the
case n = 3, which hopefully will make any undefined terms clear. Needless
to say, you should not hand in a problem whose solution you have obtained
from an outside source (except reasonable collaboration with other students
in the course).

132. [1.5] triangulations of a convex (n + 2)-gon into n triangles by n − 1
diagonals that do not intersect in their interiors

133. [1.5] binary parenthesizations of a string of n + 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

134. binary trees with n vertices
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135. [1.5] plane binary trees with 2n + 1 vertices (or n + 1 endpoints) (A
plane binary tree is a binary tree for which every vertex is either an
endpoint or has two children.)

136. [2] plane trees with n+1 vertices (A plane tree is a rooted tree for which
the subtrees of every vertex are linearly ordered from left to right.)
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137. [1.5] lattice paths from (0, 0) to (n, n) with steps (0, 1) or (1, 0), never
rising above the line y = x
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138. [1] Dyck paths from (0, 0) to (2n, 0), i.e., lattice paths with steps (1, 1)
and (1,−1), never falling below the x-axis

139. [2.5] (unordered) pairs of lattice paths with n + 1 steps each, starting
at (0, 0), using steps (1, 0) or (0, 1), ending at the same point, and only
intersecting at the beginning and end
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140. [1.5] n nonintersecting chords joining 2n points on the circumference
of a circle

r r
r r

r r

r r
r r

r r

r r
r r

r r

r r
r r

r r

r r
r r

r r

@@ �� @@ A
A

AA @@ �� @@ ��

�
�
��

��

141. [2] ways of drawing in the plane n + 1 points lying on a horizontal line
L and n arcs connecting them such that (α) the arcs do not pass below
L, (β) the graph thus formed is a tree, (γ) no two arcs intersect in their
interiors (i.e., the arcs are noncrossing), and (δ) at every vertex, all the
arcs exit in the same direction (left or right)

142. [2.5] ways of drawing in the plane n + 1 points lying on a horizontal
line L and n arcs connecting them such that (α) the arcs do not pass
below L, (β) the graph thus formed is a tree, (γ) no arc (including its
endpoints) lies strictly below another arc, and (δ) at every vertex, all
the arcs exit in the same direction (left or right)

143. [1] sequences of n 1’s and n −1’s such that every partial sum is non-
negative (with −1 denoted simply as − below)

111−−− 11−1−− 11−−1− 1−11−− 1−1−1−

144. [1] sequences 1 ≤ a1 ≤ · · · ≤ an of integers with ai ≤ i

111 112 113 122 123

145. [2] sequences a1, a2, . . . , an of integers such that a1 = 0 and 0 ≤ ai+1 ≤
ai + 1

000 001 010 011 012

146. [1.5] sequences a1, a2, . . . , an−1 of integers such that ai ≤ 1 and all
partial sums are nonnegative

0, 0 0, 1 1,−1 1, 0 1, 1
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147. [1.5] sequences a1, a2, . . . , an of integers such that ai ≥ −1, all partial
sums are nonnegative, and a1 + a2 + · · · + an = 0

0, 0, 0 0, 1,−1 1, 0,−1 1,−1, 0 2,−1,−1

148. [1.5] Sequences of n − 1 1’s and any number of −1’s such that every
partial sum is nonnegative

1, 1 1, 1,−1 1,−1, 1 1, 1,−1,−1 1,−1, 1,−1

149. [2.5] Sequences a1a2 · · · an of nonnegative integers such that aj = #{i :
i < j, ai < aj} for 1 ≤ j ≤ n

000 002 010 011 012

150. [2.5] Pairs (α, β) of compositions of n with the same number of parts,
such that α ≥ β (dominance order, i.e., α1 + · · · + αi ≥ β1 + · · · + βi

for all i)

(111, 111) (12, 12) (21, 21) (21, 12) (3, 3)

151. [2] permutations a1a2 · · · a2n of the multiset {12, 22, . . . , n2} such that:
(i) the first occurrences of 1, 2, . . . , n appear in increasing order, and
(ii) there is no subsequence of the form αβαβ

112233 112332 122331 123321 122133

152. [2.5] permutations a1a2 · · · an of [n] with longest decreasing subsequence
of length at most two (i.e., there does not exist i < j < k, ai > aj > ak),
called 321-avoiding permutations

123 213 132 312 231

153. [2] permutations a1a2 · · · an of [n] for which there does not exist i <

j < k and aj < ak < ai (called 312-avoiding permutations)

123 132 213 231 321
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154. [2] permutations w of [2n] with n cycles of length two, such that the
product (1, 2, . . . , 2n) · w has n + 1 cycles

(1, 2, 3, 4, 5, 6)(1, 2)(3, 4)(5, 6) = (1)(2, 4, 6)(3)(5)

(1, 2, 3, 4, 5, 6)(1, 2)(3, 6)(4, 5) = (1)(2, 6)(3, 5)(4)

(1, 2, 3, 4, 5, 6)(1, 4)(2, 3)(5, 6) = (1, 3)(2)(4, 6)(5)

(1, 2, 3, 4, 5, 6)(1, 6)(2, 3)(4, 5) = (1, 3, 5)(2)(4)(6)

(1, 2, 3, 4, 5, 6)(1, 6)(2, 5)(3, 4) = (1, 5)(2, 4)(3)(6)

155. [2.5] pairs (u, v) of permutations of [n] such that u and v have a total
of n + 1 cycles, and uv = (1, 2, . . . , n)

(1)(2)(3) · (1, 2, 3) (1, 2, 3) · (1)(2)(3) (1, 2)(3) · (1, 3)(2)

(1, 3)(2) · (1)(2, 3) (1)(2, 3) · (1, 2)(3)

156. [2] noncrossing partitions of [n], i.e., partitions of [n] such that if a, c

appear in a block B and b, d appear in a block B′, where a < b < c < d,
then B = B′

123 12−3 13−2 23−1 1−2−3

(The unique partition of [4] that isn’t noncrossing is 13−24.)

157. [2.5] noncrossing partitions of [2n + 1] into n + 1 blocks, such that no
block contains two consecutive integers

137−46−2−5 1357−2−4−6 157−24−3−6 17−246−3−5 17−26−35−4

158. [2.5] nonnesting partitions of [n], i.e., partitions of [n] such that if a, e

appear in a block B and b, d appear in a different block B′ where
a < b < d < e, then there is a c ∈ B satisfying b < c < d

123 12−3 13−2 23−1 1−2−3

(The unique partition of [4] that isn’t nonnesting is 14−23.)
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159. [2.5] nonisomorphic n-element posets (i.e., partially ordered sets) with
no induced subposet isomorphic to 2+2 or 3+1, where a+b denotes
the disjoint union of an a-element chain and a b-element chain
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160. [2] relations R on [n] that are reflexive (iRi), symmetric (iRj ⇒ jRi),
and such that if 1 ≤ i < j < k ≤ n and iRk, then iRj and jRk (in the
example below we write ij for the pair (i, j), and we omit the pairs ii)

∅ {12, 21} {23, 32} {12, 21, 23, 32} {12, 21, 13, 31, 23, 32}

161. [1.5] ways to stack coins in the plane, the bottom row consisting of n

consecutive coins
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162. [2.5] n-tuples (a1, a2, . . . , an) of integers ai ≥ 2 such that in the sequence
1a1a2 · · · an1, each ai divides the sum of its two neighbors

14321 13521 13231 12531 12341

163. [3] n-element subsets S of N × N such that if (i, j) ∈ S then i ≥ j and
there is a lattice path from (0, 0) to (i, j) with steps (0, 1), (1, 0), and
(1, 1) that lies entirely inside S

{(0, 0), (1, 0), (2, 0)} {(0, 0), (1, 0), (1, 1)} {(0, 0), (1, 0), (2, 1)}

{(0, 0), (1, 1), (2, 1)} {(0, 0), (1, 1), (2, 2)}

164. [3] positive integer sequences a1, a2, . . . , an+2 for which there exists an
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1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 2 1 5 1 2 3 1 3 2 1 5

2 5 1 4 4 1 5 2 2 5 1 4
3 2 3 3 3 2 3 3 3 2 3

1 5 2 2 5 1 4 4 1 5
2 3 1 3 2 1 5 1 2

1 1 1 1 1 1 1 1

Figure 1: The frieze pattern corresponding to the sequence (1, 3, 2, 1, 5, 1, 2, 3)

integer array (necessarily with n + 1 rows)

1 1 1 · · · 1 1 1 · · · 1 1
a1 a2 a3 · · · an+2 a1 a2 · · · an−1

b1 b2 b3 · · · bn+2 b1 · · · bn−2
·

·

·

r1 r2 r3 · · · rn+2 r1

1 1 1 · · · 1
(6)

such that any four neighboring entries in the configuration
r
s t
u

sat-

isfy st = ru + 1 (an example of such an array for (a1, . . . , a8) =
(1, 3, 2, 1, 5, 1, 2, 3) (necessarily unique) is given by Figure 1):

12213 22131 21312 13122 31221

165. [3] n-tuples (a1, . . . an) of positive integers such that the tridiagonal
matrix

























a1 1 0 0 · · · 0 0
1 a2 1 0 · · · 0 0
0 1 a3 1 · · · 0 0

·
·
·

0 0 0 0 · · · an−1 1
0 0 0 0 · · · 1 an
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
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is positive definite with determinant one

Note. A real matrix A is positive definite if it is symmetric and every
eigenvalue is positive; equivalently, A is symmetric and every leading
principal minor is positive. A leading principal minor is the determi-
nant of a square submatrix that fits into the upper left-hand corner of
A.

131 122 221 213 312

166. [2] Vertices of height n−1 of the tree T defined by the property that the
root has degree 2, and if the vertex x has degree k, then the children
of x have degrees 2, 3, . . . , k + 1

167. [2.5] Subsets S of N such that 0 ∈ S and such that if i ∈ S then
i + n, i + n + 1 ∈ S

N, N − {1}, N − {2}, N − {1, 2}, N − {1, 2, 5}

168. [2] Ways to write (1, 1, . . . , 1,−n) ∈ Z
n+1 as a sum of vectors ei −

ei+1 and ej − en+1, without regard to order, where ek is the kth unit
coordinate vector in Z

n+1:

(1,−1, 0, 0) + 2(0, 1,−1, 0) + 3(0, 0, 1,−1)

(1, 0, 0,−1) + (0, 1,−1, 0) + 2(0, 0, 1,−1)

(1,−1, 0, 0) + (0, 1,−1, 0) + (0, 1, 0,−1) + 2(0, 0, 1,−1)

(1,−1, 0, 0) + 2(0, 1, 0,−1) + (0, 0, 1,−1)

(1, 0, 0,−1) + (0, 1, 0,−1) + (0, 0, 1,−1)

169. [1.5] tilings of the staircase shape (n, n − 1, . . . , 1) with n rectangles
such that each rectangle contains a square at the end of some row
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170. [2] n× n N-matrices M = (mij) where mij = 0 unless i = n or i = j or
i = j − 1, with row and column sum vector (1, 2, . . . , n)





1 0 0
0 2 0
0 0 3









0 1 0
0 1 1
1 0 2









1 0 0
0 1 1
0 1 2









1 0 0
0 0 2
0 2 1









0 1 0
0 0 2
1 1 1





This concludes the list of objects counted by Catalan numbers. A few
more problems related to Catalan numbers are the following.

171. (*) We have
n

∑

k=0

C2kC2(n−k) = 4nCn.

172. (*) An intriguing variation of Problem 170 above is the following. A
bijective proof would be of great interest. Let g(n) denote the number
of n × n N-matrices M = (mij) where mij = 0 if i > j + 1, with row
and column sum vector

(

1, 3, 6, . . . ,
(

n+1
2

))

. For instance, when n = 2
there are the two matrices

[

1 0
0 3

] [

0 1
1 2

]

.

Then g(n) = C1C2 · · ·Cn.

173. [2] (compare with Problem 168) Let f(n) be the number of ways to
write the vector

(

1, 2, 3, . . . , n,−

(

n + 1

2

))

∈ Z
n+1

as a sum of vectors ei − ej, 1 ≤ i < j ≤ n + 1, without regard to
order, where ek is the kth unit coordinate vector in Z

n+1. For in-
stance, when n = 2 there are the two ways (1, 2,−3) = (1, 0,−1) +
2(0, 1,−1) = (1,−1, 0) + 3(0, 1,−1). Assuming Problem 172, show
that f(n) = C1C2 · · ·Cn.
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174. [2.5] The Narayana numbers N(n, k) are defined by

N(n, k) =
1

n

(

n

k

)(

n

k − 1

)

.

Let Xnk be the set of all sequences w = w1w2 · · ·w2n of n 1’s and n

−1’s with all partial sums nonnegative, such that

k = #{j : wj = 1, wj+1 = −1}.

Show that N(n, k) = #Xnk. Hence by Problem 143, there follows

n
∑

k=1

N(n, k) = Cn.

One therefore says that the Narayana numbers are a refinement of
the Catalan numbers. There are many other interesting refinements of
Catalan numbers, but we won’t consider them here.
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