18.566 PROBLEMS #¢6
Spring 2003

Let A = (A, Ag,...) F n. A standard Young tableau (SYT) of shape A is
a left-justified array of the integers 1,2,...,n, each occurring exactly once,
with )\; entries in the ¢th row, such that every row and column is increasing.
An example of an SYT of shape (4, 4,2) is given by

123 6

4 5 8 10 .

79
We write f* for the number of SYT of shape \.

Let u be a square of the Young diagram of A, denoted v € X\. The hook
length h(u) of u is the number of squares directly to the right or directly
below u, counting u itself once. If u = (4, j) (i-e., u is in the ith row and jth
column of (the Young diagram of) A), then h(u) = A\; + \; —i —j + 1. The
hook lengths of (4,2,2) are given by

175. [1.5] Let A = (A1,...,A,) be a partition, and set u; = \; +n — i.
The multisets {h(u) : v € AyU{pi —p; : 1 < i < j < n} and
Ui {1,2,..., u} are equal.

176. [2] Let nx(A) denote the number of hooks of length £ of the partition

A. Then
Z mk(A) =k ka(/\)-

AFn AbFn
As usual, mg()\) denotes the number of parts of A equal to k.

177. [2] Let A+ n and 1 <4 < n. The number of SYT of shape A for which
1+ 1 appears in a lower row than 7 is independent of 7.

41



178.

179.

180.
181.

182.

183.

184.

185.

186.

187.

188.

[1] The number of SYT of shape (n,n) is the Catalan number C,, =
2n

ﬁii(n)'

(*) Let ¢* denote the number of SYT of shape A with a 2 in the first

row. Then

[0 =) )

[1.5] How many SYT of shape (n") have main diagonal (1, 4,9, 16, ...,n?%)?
[3] The number of SYT of shape A is given by

n!
Iluekh(u)'

This is the famous hook-length formula of Frame, Robinson, and Thrall
(1954). It was only given a “satisfactory” bijective proof in 1997.

=

[3] Show that >, (f*)? = n!l. In other words, the number of pairs
(P, @) of SYT of the same shape and with n entries is n!.

[2] With ¢* as in Problem 179, evaluate the sums

Za)‘f’\ and Z(a’\)2.

AFn AFn

[3] The total number of SYT with n entries is equal to the number of
involutions w € &, i.e., w? = 1.

[3] The number of SYT with 2n entries and all rows of even length is
1-3-5---(2n—1).

[2] The number of SYT with n entries and at most two rows is (Ln72 J).

[3] The number of SYT with n entries and at most three rows is equal
to 312 (1) C;y, where C; denotes a Catalan number.

[3] The number of SYT with n entries and at most four rows is equal
t0 Clnt1)/2) Crn1y/21-

NoOTE. There is a similar, though somewhat more complicated, formula
for the case of five rows. For six and more rows, no “reasonable” formula
is known.
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189.

190.

191.

192.

193.

[2] The number of pairs (P, Q) of SYT of the same shape with n entries
each and at most two rows is the Catalan number C),.

[3] The number of pairs (P, Q) of SYT of the same shape with n entries
each and at most three rows is given by

(n+ 1)i(n +2) kzi; (Qkk> (Zi 1) (Z i 3)

[2] Let W;(n) be the number of ways to draw 7 diagonals in a convex n-
gon such that no two diagonals intersect in their interiors. Then W;(n)
is the number of standard Young tableaux of shape ((i + 1)%, 1" ¢3)
(i.e., two parts equal to i+ 1 and n — i — 3 parts equal to 1; when i = 0
there are n — 1 parts equal to 1).

NoTE. Given the result of this problem, it follows immediately from
the hook-length formula (Problem 181) that

1 ) -3
Wi(n) = <n+z)(n >,
n+i\z+1 .
a result originally stated by Kirkman (1857) and Prouhet (1866), with
the first complete proof by Cayley (1890-91).

[2] Let T be an SYT of shape A - n. For each entry of 7" not in the first
column, let f(7) be the number of entries j in the column immediately
to the left of 4 and in a row not above i, for which j < 7. Define
F(T) = 11, f(¢), where i ranges over all entries of T not in the first
column. For instance, if

368
T = 247

?

TN =

then £(3) =2, f(4) =1, f(6) =2, f(7) = 1, f(8) = 2, and f(T) = 8.
Then )= f(T), where T ranges over all SYT of shape A, is equal
to the number of partitions of the set [n] of type A (i.e., with block
sizes A1, Ao, .. .).

[3.5] Let A - n. An assignment u +— a, of the distinct integers
1,2,...,n to the squares u € X is a balanced tableau of shape A if
for each v € A the number a, is the kth largest number in the hook
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of u, where k is the leg-length (number of squares directly below u,
counting u itself) of the hook of u. For instance, the balanced tableaux
of shape (3,2) are

421 423 425 435 1
21 :

32
93 o1 31 04

Let b* be the number of balanced tableaux of shape A\. Then b* = f*,
the number of SYT of shape A.
NoTE. For such a simply stated problem, this seems remarkably diffi-

cult to prove.

194. [2] Let f(n) be the number of ways to write the permutation n,n —
1,n—2,...,1 € &, as a product of (72’) (the minimum possible) adjacent
transpositions s; = (4,7 + 1), 1 < i < n — 1. For instance, f(3) = 2,
corresponding to s;ses; and $38182. Then f(n) is equal to the number
of balanced tableaux (as defined in the previous problem) of shape
(n—1,n—-2,...,1).

NOTE. It thus follows from the previous problem that f(n) = f»=1n=21),
Any bijective proof of this difficult result would be an impressive achieve-
ment. (There are known bijective proofs, but they are far from obvious
even when the bijection is described.)

195. (*) Let wo=n,n—1,n—2,...,1€ &, and p = (g) Define
Ry, ={(a1,...,a,) € [n = 1P : wo = 54,50, "~ * Sa, }»

where s; = (i,i 4+ 1) as in the previous problem. For example, Ry =
{(1,2,1), (2,1.2)}. Then

E aiay - -a, = pl.

(a1,...,ap)ERR
For instance, when n =3 we get 1-2-14+2-1-2 =3
196. [2.5] An oscillating tableau of length 2n and shape () is a sequence
A% AL A7),

where each \* is a partition, A\ = \?" = (), and each )\’ is obtained
from A ! by either adding or removing a square from (the diagram

44



197.

198.

199.

200.

of) A. For instance, when n = 2 we get the three oscillating tableaux
(0,1,0,1,0), (#,1,2,1,0), and (,1,11,1,0). The number of oscillating
tableaux of length 2n and shape () is equal to 1-3-5---(2n — 1) (the
number of partitions of [2n] into n 2-element blocks).

[2.5] The number of ways to move from the empty partition @) to () in n
steps, where each step consists of either (i) adding a box, (ii) removing
a box, or (iii) adding and then removing a box, always keeping the
diagram of a partition (even in the middle of a step of type (iii)), is the
Bell number B(n) (the number of partitions of an n-element set). For
instance, when n = 3 we get the five sequences

0 (1,0) (1,0) (1,0)
0 (1,0 1 0
0 1 2,1) 0
g 1 (11,1 0
(. 0 (1,0)

(*) Given A F n, let H, denote the product of the hook lengths of A,
so Hy = n!/f*. Then for k € N,

_ 1
ZH/’\“ 2 = ﬁ#{(wl,w%...,wk) € &*  wiwi-owi=1}.
AFn '

(*) The magjor index maj(T) of an SYT T is defined to be the sum of
all entries ¢ of T' for which 7 4+ 1 appears in a lower row than 7. Fix
n € Pand A+ n, and let m € Z. Then the number of SYT T of shape
A satisfying maj(7") = m (mod n) depends only on A and ged(m, n).

[2.5] Let p be a partition, and let A, be the infinite shape consisting
of the quadrant @ = {(¢,7) : i <0, j > 0} with the shape y removed
from the lower right-hand corner. Thus every square of A, has a finite
hook and hence a hook length. For instance, when u = (3,1) we get
the diagram
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201.

10 | 9 8 6 ) 3

Then the multiset of hook lengths of A, is equal to the union of the
multiset of hook lengths of @ (explicitly given by {1',22 3% ...}) and
the multiset of hook lengths of .

[2.5] Let A be a partition with distinct parts, denoted A = n. A shifted
standard Young tableau (SHSYT) of shape A is defined just like an
ordinary standard Young tableau of shape A, except that each row is

indented one space to the right from the row above. An example of an
SHSYT of shape (5,4, 2) is given by

1 9 9
8 11.

0

2
4

N O W
—_

Let ¢* denote the number of shifted SYT of shape \. Prove by a
suitable modification of RSK that

Z o=t (g)‘)2 =nl.

AEn

NoTE. The “shifted analogue” of Problem 184 is the following curious
result. Let ¢ = (1414)/v/2 = €*>™/%. Let

u(n) — Z CZ()\)Q(H—Z()\))/QQ)\.
AEn
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202.

203.

Then "
Z u(n)t— = ettta?”,

[2.5] A plane partition of n is an array m = (m;;); j>1 of nonnegative in-
tegers whose rows and columns are weakly decreasing and whose entries
sum to n. When writing 7, the entries equal to 0 are often omitted.
Thus the plane partitions of the integers 0 < n < 3 are given by

g 1 2 11 1 3 21 111 11 2 1
1 1 1 1
1.

If 7 is a plane partition of n, then we write |7| = n. Let a,5(n) denote
the number of plane partitions of n with at most r rows and at most s
columns (of nonzero entries). Then

Za'r‘s( HH z+j 1 1. (7)

n>0 i=1 j=1

In particular, let a(n) denote the total number of plane partitions of n.
If we let r,s — o0 in (7) then it’s not hard to see that we get

Y a(ma" =1 -2)7,

n>0 i>1

a famous formula of MacMahon.
HinT. Use the RSK algorithm.

NoTE. At this point it’s natural to consider three-dimensional (and
higher) partitions, but almost nothing is known about them, and a
“reasonable” enumeration of them is believed to be hopeless.

[3] Fix r,s,t > 0. Let P(r, s, t) denote the set of plane partitions with
at most r rows, at most s columns, and with largest part at most 2.

Then
1— xz—}-]-l—k 1

2 x‘”'—HHfll_WM 5

wEP(r,s,t) =1 j=1k=1

Note that Problem 202 is the case t — oo.
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204. [3] A plane partition 7 = (m;;) is symmetric if m;; = 7;; for all 4, j. Let
b(n) denote the number of symmetric plane partitions of n. Then

n 1
Zb(n)x = H (L= 221 (1 = g20) 72

n>0 i>1

205. [2] Let f,5(n) denote the number of plane partitions 7 = (7;;) with at
most 7 rows, at most s columns, and with trace tr(m) := w1 +moa+- - - =

n. Then )
rs+n—
frs(n) = ( rs—1 )

206. [1.5] A monotone triangle of length n is a triangular array of integers
whose first row is 1,2,...,n, every row is strictly increasing, and each
entry is (weakly) between its two neighbors above. This somewhat
vague definition should be made clear by the following example:

1 2 3 4 3 6

There are for instance seven monotone triangles of length 3, given by

123 123 123 123 123 123 123
12 12 13 13 13 23 23
1 2 1 2 3 2 3

An alternating sign matriz is a square matrix with entries 0, +1, such
that the nonzero entries in every row and column alternate 1, —1,1,—1,.. .,
1,—1,1. (Thus every row and column sum is 1.) An example is

0 0 0 100
0 0 1 000
0 1 -1 010
1 -1 1 -101
0 0 0 100
(0 1 0 00 0]

The number of monotone triangles of length n is equal to the number
of n x n alternating sign matrices.
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207. (*) An n x n totally symmetric self-complementary (TSSC) plane par-
tition is a plane partition m = (m;;)7,_, satisfying: (i) 7 is symmetric
(as defined in Problem 204), (ii) every row (and hence every column
by symmetry) of 7 is a self-conjugate partition, and (iii) 7 is invariant
under the operation of replacing each entry ¢ with n — ¢ and rotating
180°. It is easy to see that n must be even. The 4 x 4 TSSC plane
partitions are given by:

4 4 2 2 4 4 3 2
4 4 2 2 4 3 21
2200 3210
2200 2100

A descending plane partition is an array of positive integers satisfying:
(i) Each row after the first contains fewer elements than the row above,
(ii) each row is indented one space to the right from the row above,
(iii) the entries weakly decrease in each row, (iv) the entries strictly
decrease in each column, (v) the first entry in each row (except the
first) does not exceed the number of entries in the preceding row, and
(vi) the first entry in each row is greater than the number of entries in
its own row. The descending partitions with largest part at most three
are given by

o 2 3 31 32 33 33
9 -
The following four numbers are all equal:

n—1

(a) H (3i+1)!

ORI
(b) the number of monotone triangles of length n
(c) the number of 2n x 2n TSSC plane partitions
(d) the number of descending plane partitions with largest part at

most n

NoOTE. There are (3) = 6 pairs of equal numbers above. None of
these six pairs is known to be equal by a bijective proof! (All are
known to be equal by complicated indirect arguments.) This is one
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208.

209.

210.

of the most intriguing open problems in the area of bijective proofs.
There are certain refinements of the numbers (a)-(d) which may be
useful in finding bijections. For instance, it appears that the number
of descending plane partitions with largest part at most n and with
exactly k£ parts equal to n is equal to the number of monotone triangles
of length n and bottom element k£ 4 1. Similarly, it seems that the
number of descending plane partitions with largest part at most n and
with exactly k parts is equal to the number of monotone triangles of
length n with exactly k£ entries which are greater than the entry to the
upper left.

[3] If A is an alternating sign matrix, let s(A) denote the number of

—1’sin A. Then
PBEARES 2(3),
A

where A ranges over all n x n alternating sign matrices.

[3] Let w = a;---a, € &,. An increasing subsequence of w of length
J 1s a subsequence a;,a;, - - - ay; of w (so 41 <49 < --- < i;) such that
ai, < @z < -+ < a;;. Decreasing subsequence is defined analogously.
Let is(w) (respectively, ds(w)) denote the length of the longest increas-
ing (respectively, decreasing) subsequence of w. A famous result of
Erdds and Szekeres, given an equally famous elegant pigeonhole proof
by Seidenberg, states that if n = pg + 1, then either is(w) > p or
ds(w) > ¢. The number A(p, q) of w € &,, satisfying is(w) = p and
ds(w) = q is given by (f*)?, where X is the partition with p parts
equal to ¢ (i.e., the diagram of X is a p X ¢ rectangle). Note that the
hook-length formula (Problem 181) then gives an explicit formula for

A(p, q).

[3] If T is an SYT with n entries, then let w(T") be the permutation of
1,2,...,n obtained by reading the entries of T in the usual (English)
reading order. For instance, if 7" is given by

1349
268
57
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then w(7T") = 134926857 € Gy. Define

1, if w(T) is an even permutation
—1, if w(7T) is an odd permutation.

sgn(T) = {

Then
> " sgn(T) =2/, (8)
T

summed over all SYT with n entries.

o1



