
The Polynomial Method, Fall 2012, Problem Set 2

1. Go back to the summaries you made for the proofs of the main ex-
amples of the polynomial method we saw in the first chunk of the class:
the Berlekamp-Welch algorithm, finite field Nikodym and Kakeya, and
the joints problem. Just using the summary, try to reconstruct the
proof. (If you think you can do it without looking at your summary,
that’s great too.) You don’t have to turn anything in. If you find
a tricky point that you hadn’t noticed the first time you learned the
proof, you can mention it.

2. Give a short summary of the proof of the crossing number theorem
and the Szemerédi-Trotter theorem. The summary should be shorter
than the whole proof. Since these proofs are already pretty short,
probably 1-3 sentences is a good length for each summary. But you
should try to include whatever seems to you to be the most essential
points and/or the points that you would be most likely to forget. You
might imagine that in a few weeks, you would try to reconstruct the
proofs just based on these outlines. What is the key information that
you should record for yourself?

3. Incidence theory for circles in the plane. Suppose we have L

circles in the plane. We let Pk be the set of points that lie in ≥ k

circles, and we let N = |Pk|. How big can N be in terms of L and k?

a. First, just use the fact that two circles intersect in ≤ 2 points.
Using this, prove that N . L2k−2. Also, if k > 10L2/3, prove that
N . Lk−1. If k > 10L2/3 show that this upper bound is sharp up to a
constant factor.

b. Consider the set of all circles in 2
Fq . In this context, a circle

is defined to be the set of solutions (x, y) of an equation of the form
(x−a)2+(y−b)2 = c with c = 0. Prove that any two circles intersect in
≤ 2 points. You can assume that the polynomial (x−a)2 +(y− b)2 − c

is irreducible. Check that the set of all circles has L ∼ q3 circles, and
that each point of 2

Fq lies in & q2 of the circles. In this case, we have

k ∼ L2/3 and N ∼ L2/3 ∼ L2k−2. You don’t have to write details.

c. Now introduce the crossing number theorem and try to prove a
better estimate. Initially, let’s assume that the centers of the L circles
are all distinct. We may as well also assume that k ≤ 10L2/3, because
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of part a. Under these assumptions, prove that N . L2k−2−ǫ for some
ǫ > 0. What’s the best ǫ you can prove?

d. (extra credit) Remove the assumption that the centers of the
circles are distinct.

4. Let L be a set of L lines in 3
R with ≤ B lines in any plane or

degree 2 surface. Prove that the number of intersection points of L is
. L2−ǫ + LB for some ǫ > 0. I have in mind to do this using reguli.
What value of ǫ do you get? If it’s helpful, you can assume that each
point lies in ≤ 2 lines of L.

5. The Zarankiewicz problem. Consider an M × N 0-1 matrix with
no V × W minor of all 1’s. By the Kővári-Sós-Turán theorem, the
number of 1’s in the matrix is at most C 1

V W /V MN1−(1/V ). In this
problem we investigate examples. The two main sources of examples
are algebraic and random.

a. Polynomials over finite fields. Let s ≥ 1. Using graphs of poly-
nomials over Fq instead of lines, give an example of a 0-1 matrix with
dimensions N s/2×N , with no 2×s minor of all 1’s, and with N (s+1)/2 1’s
in it. (You should give examples for an infinite sequence of N → ∞.)

b. Random construction. Start wih a random N × N matrix where
each entry is 1 with probability p. Determine/estimate the expected
number of V × V minors of all 1’s. By editing a random matrix, prove
that there exist N × N matrices with no V × V minor of all 1’s and
with ∼ 2 2

N −

V +1 1’s.

c. (for your reference) Brown’s example. W. G. Brown gave an
example of N ×N 0-1 matrices with no 3× 3 minor of all 1’s and with
& N5/3 1’s. I was originally planning to have you find the example
with some hints, but it’s more complicated than I realized so I decided
it wasn’t a good problem. The trickiest/cleverest part is in a different
direction from the issues we’re studying in the course. You can read
about it in Brown’s paper “On graphs that do not contain a Thomsen
graph” (Canad. Math. Bull. 9 1966 281-285). Here is an outline for
anyone who’s curious.

We let p be a prime, and consider “spheres” in 3
Fp. If a ∈ 3

Fp and

r ∈ Fp, we let Sr(a) be the set of solutions to the equation (x 2
1 −a1) +

(x2−a2)
2 +(x3 −a3)

2 = r. We fix r, and consider the incidence matrix
of all the spheres Sr(a) with all the points x ∈ 3

Fp. This gives an N ×N

0-1 matrix with N = p3.
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i.) For any r, |Sr(a)| & p2. In fact it’s always ≥ p2 − p. Therefore,
the number of 1’s in the incidence matrix is & N5/3. If the intersection
of any three distinct spheres Sr(a)∩Sr(b)∩Sr(c) is at most two points,
then the incidence matrix contains no 3 × 3 minor. Notice that this is
true for spheres in 3

R with any radius r > 0.
ii.) The intersection of any two spheres Sr(a) ∩ Sr(b) lies in a plane

- their “perpendicular bisector”. The intersection of any three distinct
spheres Sr(a)∩ Sr(b)∩ Sr(c) lies in a line. The intersection of this line
with S (a) is ≤ 2 points, unless the whole line lies inr Sr(a).

iii.) If p is congruent to 1 mod 4, then Sr contains a line if and only
if r is a quadratic residue in Fp. This last part is fiendishly clever. In
conclusion, if p = 1 mod 4, and r is a quadratic non-residue, then the
incidence matrix has no 3 × 3 minor of all 1’s.

6. Degree reduction in four dimensions. Suppose that γi are lines in
4

Fq. Let X = ∪iγi. Suppose that each point of X lies in ≥ 2 lines γi.

We suppose that X is only a small fraction of 4
Fq, and try to understand

the possible structure of X.

a. With just a counting argument, prove that |X| & q2.

In the rest of the problem, you can assume that |X| > q2.01 and also
that q is sufficiently large.

b. Consider the minimal degree (non-zero) polynomial P that van-
ishes on X. By pure dimension-counting, note that degP . |X|1/4.
Using degree reduction, prove that degP . |X|1/2q−1. For example,
if |X| = q3, the simple argument gives degP . q3/4, and the more
complicated argument proves that degP . q1/2.

c. Suppose that the polynomial P factors in a non-trivial way as
P =

∏
Pj j, with Pj irreducible. What does this imply about the

structure of X?

d. Assume now that P is irreducible. Let d := degP . Prove that
there is a polynomial Q with the following properties: Q is not a multi-
ple of P , Q vanishes on X, and degQ . |X|q−2d−1. This is the trickiest
part. Hint: compare with our proof of Bezout’s theorem.

e. Let Z = Z(P, Q) be the subset of 4
Fq where P and Q van-

ish. By varying the proof of Bezout’s theorem, prove that |Z| ≤
(degP )(degQ)q2 . |X|.
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