
REGULI AND APPLICATIONS, ZARANKIEWICZ PROBLEM 

One of our long-term goals is to pursue some questions of incidence geometry in 
R

3 . We recall one question to direct our focus during this lecture. 

Question 1. If L is a set of L lines in R3, and if at most 10 (or at most B) lines lie 
in a plane or degree 2 surface, what is the maximum possible number of intersection 
points of L? 

Now we introduce an important tool for incidence geometry in three dimensions. 

1. Reguli 

It is a classical fact that any three lines in R3 lie in the zero set of a degree 2 
polynomial. This fact can be used to prove estimates in incidence geometry in three 
dimensions. 

Proposition 1.1. For any three lines l1, l2, l3 in R3, there is a non-zero degree 2 
polynomial Q that vanishes on all three lines. 

Proof. We will prove this result by counting dimensions. We can think of the argu­
ment as an example of the polynomial method. 

Let V (2) be the space of polynomials of degree ≤ 2 in three variables. The space 
V (2) is a vector space of dimension 10. (A basis is given by x2, xy, xz, y2, yz, z2, x, y, z, 1.) 

Choose three points on each line. Let pi,j be three distinct points on li. By linear 
algebra, we can find a non-zero degree 2 polynomial Q that vanishes at all the points 
pi,j. Since Q has degree 2 and vanishes at three distinct points of li, it must vanish 
on all of li. So Q vanishes on all three lines as desired. D 

This proposition allows us get good information about the lines that intersect all 
three lines l1, l2, and l3. Exactly what happens depends a little on the properties of 
l1, l2, and l3. Recall that two lines in R3 are skew if they don’t intersect and they’re 
not parallel. The most important case concerns three skew lines. 

Proposition 1.2. If l1, l2, and l3 are pairwise skew, then there is an irreducible 
degree 2 algebraic surface R(l1, l2, l3) which contains every line that intersects l1, l2, 
and l3. 

Proof. By the last proposition, there is a non-zero degree 2 polynomial Q that van­
ishes on l1, l2, and l3. Let R(l1, l2, l3) be the zero set of Q. Suppose that l intersects 
l1, l2, and l3. Since l1, l2, and l3 are disjoint, the line l must intersect R in three 
distinct points. But then Q vanishes identically on l, and l is contained in R. 
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Finally, if Q was reducible, then it would be a product of linear factors, and R 
would be a union of two planes. But since the lines l1, l2, and l3 are skew, no two of 
them lie in a plane, and so R cannot be a union of two planes. Also, if Q had degree 
1, then R would be a plane, and this cannot happen either. D 

The surface R(l1, l2, l3) is called a regulus. Reguli have played an important role in 
incidence geometry for a long time... including the first work on the joints problem 
in the paper “Counting and cutting cycles of lines and rods in space”, by Chazelle, 
Edelsbrunner, Guibas, Pollack, Seidel, Sharir, and Snoeyink (Computational Geom­
etry, Theory and Applications 1 (1992) 305-323). 

To complement this proposition, we record a couple of trivial lemmas which deal 
with the case when two lines are not skew. 

Lemma 1.3. Suppose that l1 and l2 are lines in R
3 that intersect at a point p. 

Suppose that P is the plane that contains l1 and l2. Then any line which intersects 
both l1 and l2 either contains p or lies in P . 

Lemma 1.4. Suppose that l1 and l2 are parallel. Let P be the plane that contains 
them. Then any line which intersects both l1 and l2 lies in P . 

Chazelle et al applied these results to 3d incidence geometry. For example, they 
proved that the number of joints determined by L lines is ; L7/4 . We will use their 
method to work on Question 1. 

Theorem 1.5. Suppose that L is a set of L lines in R3 with ≤ 10 lines in any plane 
or degree 2 surface. Then the number of intersection points of L is ; L5/3 . 

Proof. We will work with the intersection matrix of a set of lines L. Let us record 
which pairs of lines intersect. We make an L × L matrix A whose entries are 0 or 1, 
where the entry aij is 1 if and only if li and lj intersect. (Convention for the diagonal: 
all zeroes.) 

We write |A| to mean the number of 1’s in the matrix A. If every intersection 
point was a simple intersection of two lines, then the number of intersection points 
would be (1/2)|A|. Some intersection points have multiplicity 2, others may have 
very high multiplicity, and we want to keep track of them separately. We let At be 
the matrix with a 1 in the (i,j)-entry if li and lj intersect at a point lying in ∼ 2t 

lines of L. (More precisely, ∼ 2t means more than 2t−1 but at most 2t.) The number 
of points with intersection multiplicity ∼ 2t is ∼ |At|2

−2t . Therefore, the number of 
intersection points is 

∼ |At|2
−2t . 

t 

Our next goal is to estimate |At|. 
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Lemma 1.6. Suppose that L has ≤ 10 lines in any plane or degree 2 surface. Then 
At has no 3 × 20 · 2t minor of all 1’s. 

Proof. Suppose that At has a 3×20· 2t minor of all 1’s. Let the three rows by labelled 
by l1, l2, l3. If l1, l2, l3 are all skew, then the ≥ 20 column lines all lie in the degree 2 
surface R(l1, l2, l3), which is impossible. Suppose that l1, l2, l3 are not all skew. After 
relabelling, we can assume that l1 and l2 are not skew. If l1 and l2 interesect in a 
point p and lie in a plane P , then we either get 5 · 2t column lines containing p or 
5 · 2t column lines lying in P . There can’t be that many lines in a plane. Also, by 
the definition of At, there should only be ≤ 2t lines of L containing p. Finally, if l1 

and l2 are parallel lines in the plane P , then we get 10 · 2t column lines in the plane 
P . D 

Knowing that the matrix At does not have any 3× 20 · 2t minors of all 1’s controls 
the number of 1’s in the matrix by the following classical theorem. It touches on an 
important area of combinatorics with many open questions. 

Theorem 1.7. (Kővári-Sós-Turán, 1954) Suppose that A is an L ×L matrix whose 
entries are 0 or 1. Suppose that A has no V ×W minor of all 1’s, for some integers 

2V −1 
VV ≤ W . Then the number of 1’s in A is at most C(V )W 1/V L . 

We give the proof and discuss the problem more generally below. So we see 
|At| ; 2t/3L5/3 . 

; L5/3 2−(5/3)t ; L5/3|At|2
−2t . 

t t 

D 

Using the polynomial method, we will eventually improve this bound to L3/2 . 

2. The Zarankiewicz problem 

In the early 1950’s, Zarankiewicz posed the following problem. Suppose that A is 
an M × N matrix with entries 0 or 1, and suppose that A has no V × W minor of 
all 1’s. What is the maximum possible number of 1’s that we can have in A? We 
considered the problem above for square matrices M = N = L. 

Theorem 2.1. (Kővári-Sós-Turán, 1954) Suppose that A is an M ×N matrix whose 
entries are 0 or 1. Suppose that A has no V ×W minor of all 1’s, for some integers 

V ≤ W . Then the number of 1’s in A is at most C(V )W 1/V MN 
V −1 

.V 

Proof. Let C1, ..., CN denote the columns of A. We can think of each column as a 
( )

subset of the numbers [1, ..., M ]. We let M denote all of the sets of V distinct 
(

V 
)

elements of the numbers 1, ..., M . We let C
V 

j denote all of the sets of V distinct 

∑ ∑
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(

Cj 
) (

M
)

elements of Cj. Clearly 
V ⊂ 

V . We let |Cj| be the number of elements in Cj, so 
( ) ( )

Cj |Cj |that the number of elements in is .
V V 

The condition that A has no V × W minor of all 1’s implies that each element of 
(

M
) (

Cj 
)

V occurs in < W of the sets 
V . So we get the following inequality: 

N 
|Cj| M 

< W . 
V V 

j=1 

We write A ; B for A ≤ C(V )B. Up to constant C(V ), the left-hand side is 
roughly |Cj|

V , and so 

N 

|Cj|
V ; WMv . 

j=1 
L

The total number of 1’s in A is j |Cj|. Now by Holder’s inequality, 

N 
V −1 V −1 V −1 

|Cj|
V )1/V N W 1/V MN V V V|Cj| ≤ ( ; (WMV )1/V N = . 

j=1 

D 

The Zarankiewicz problem has been in the background of many questions in in­
cidence geometry. For example, suppose that we have S points and L lines in the 
plane. We can form the incidence matrix, an S × L matrix. Each row corresponds 
to a point, each column corresponds to a line, and there is a 1 if the point lies on 
the line. This matrix has no 2 × 2 submatrix of all 1’s, because two lines intersect 
in only one point. Therefore, the number of incidences is ; SL1/2 . (The situation is 
symmetric, so the number of incidences is also ; S1/2L.) These bounds are equiv­
alent to the first bounds we proved about incidence geometry of points and lines in 
the plane. 

We can do other examples with unit circles and/or circles. For instance, consider 
the unit distance problem. We have N points in the plane. Form an N × N 0/1 
matrix with a 1 whenever the distance between the corresponding points is 1. We 
can think of this as an incidence matrix. The rows correspond to points, and the 
columns correspond to unit circles centered at the points, and an entry is 1 if the 
point corresonding to the row lies on the unit circle corresponding to the column. 
Two unit circles intersect in at most 2 points, and so this matrix has no 3× 2 minor 
of all 1’s. Therefore, the number of unit distances is ; N3/2 . 

It’s a very interesting question how sharp the Kővári-Sós-Turán theorem is. After 
a couple of examples, we come to deep open problems. 

∑

∑

∑ ∑
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Example 1. Consider an N × N 0-1 matrix with no 2 × 2 submatrix. The KST 
N3/2theorem says that the matrix has ; 1’s. This estimate is sharp. The example 

was discovered by Reiman in 1958 (”Uber ein Problem von K. Zarankiewicz”, Acta 
Mathematica Hungarica 9 (34): 269-273.) We have essentially already seen the 
example: it is the incidence matrix of lines over a finite field. We pick N = q2 lines 
in the plane F2 

q . We let the rows of our matrix correspond to the points of F2 
q and 

the columns correspond to the q2 chosen lines. We put a 1 in the matrix if the point 
corresponding to the row lies in the line corresponding to the column. Since two 
lines intersect in at most 1 point, there are no 2 × 2 submatrices. Since each line 

N3/2contains q points, our matrix has q3 = 1’s. Working with the projective plane 
over Fq is even slightly better. 

Example 2. Next consider an N ×N 0-1 matrix with no 3×3 submatrix. The KST 
theorem says that the matrix has ; N5/3 1’s. This example was found by Brown in 
the early 60’s. It involves a clever construction with some low-degree polynomials 
over finite fields. We will do it on the homework. 

This example is clever and special, and it seems very hard to generalize it to 4× 4 
minors. Consider an N ×N 0-1 matrix with no 4 × 4 submatrix. The KST theorem 
says that the matrix has ; N7/4 1’s. But the best examples have only ∼ N5/3 1’s ­
and these are basically Brown’s examples which have no 3 × 3 minor of all 1’s! It’s 
a longstanding open problem in combinatorics where the truth lies between Brown’s 
example and the KST upper bound. 

Example 3. Finally, consider an N × N 0-1 matrix with no V × V submatrix. 
The KST theorem says that the number of 1’s is ≤ C(V )N2−(1/V ). For large V , the 
best examples come from a random construction. On the homework, you will use 

the technique to prove that there are examples with ∼ N2− 2 

1’s. For V ≥ 5, I V +1 

believe these are the largest known examples. 
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